martes, 22 de noviembre de 2016

Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities Victor Neira, Peter Rabinowitz, Aaron Rendahl, Blanca Paccha, Shawn G. Gibbs, Montserrat Torremorell 2016

Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities
Victor Neira, Peter Rabinowitz, Aaron Rendahl, Blanca Paccha, Shawn G. Gibbs, Montserrat Torremorell

Indirect transmission of influenza A virus (IAV) in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98) of oral fluid, 38% (32/84) of pen railing and 43% (35/82) of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2). Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.
Introduction

Influenza A virus (IAV) causes significant epidemics of respiratory disease in humans that result in human deaths and raise public health concerns that require a deeper understanding of IAV epidemiology and control. IAV is shared among animals and people and novel viruses capable of causing pandemics are the result of reassortant viruses from different species. Despite evidence that reassortment can happen in various species, swine is often labeled as the “mixing vessel” since swine have receptors capable to replicate influenza viruses of avian, human and swine origin. Because these viruses can infect humans, understanding transmission of swine-origin IAVs should be a priority.

In addition to IAV being a major pathogen for humans, IAV is also a serious problem in swine causing frequent outbreaks that involve both animal illness and zoonotic infections [1–3]. In swine, IAV is distributed worldwide and is endemic in the US swine herd [2]. For almost a century, classical H1N1 viruses were the dominant IAVs until the appearance and subsequent circulation of double and triple reassortants since 1998 [4–6]. More recently, the 2009 pandemic virus [7], and the on-going influx of human-origin IAVs in swine [8, 9] has led to a more complex epidemiologic picture, making control of influenza in swine very difficult. The 2009 H1N1 pandemic, as well as outbreaks of variant H3N2 (H3N2v) influenza have demonstrated the potential for swine origin IAVs to cause significant morbidity and mortality globally, impacting the general public, swine workers and animal agriculture [10, 11]. Swine workers in particular, and their non-swine-exposed spouses, have been shown to be at a higher risk of swine-origin IAV infections than the general public [12], leading to calls for including such workers in pandemic preparedness and surveillance [13]. Since both direct and indirect contact exposures in commercial swine and agricultural fairs have been suspected in IAV zoonotic infections [10, 13], influenza prevention efforts involving swine production need to address multiple potential exposure routes.

While it is known that transmission of IAV occurs by direct contact, IAV can also be transmitted through indirect routes. Transmission of IAV via contaminated personnel and fomites has been documented in pigs [14] and aerosol transmission of IAV has been reported in various species [15–21]. In swine, IAV has been detected in aerosols from immune swine [22–24] and more recently IAV was isolated from air samples from inside and outside swine farms [23], and live animal markets in Minnesota [3].

Despite the growing evidence of indirect transmission of swine-origin IAV, there is limited information on the natural dynamics of IAV outbreaks in swine environments including production facilities. Information is lacking on levels of exposure encountered by both swine and people exposed to swine aerosols or contaminated surfaces in swine facilities during outbreaks of IAV. Therefore, our objective was to characterize viral load, viability and persistence of IAV in the air and on surfaces during periods of active IAV outbreaks in swine production facilities. This knowledge would further our understanding of the risk of IAV transmission between swine and people, and help inform prevention efforts.

Material and Methods

Procedures and protocols used in this study were approved by the University of Minnesota Institutional Animal Care and Use Committee protocol # 1207B17281 and the Institutional Biosafety Committee protocol # 1208H18341. Prior to the start of the study signed consent forms were obtained from the participating herds and forms were signed by herd owners or the production managers. No protected species were sampled.

Farm identification and selection

Eleven investigations of IAV outbreaks in six swine farms were conducted from October 2012 to May 2013. Farms with suspected outbreaks were identified by contacting veterinarians in Southern Minnesota and Northern Iowa. Veterinarians were asked to alert the investigators upon sudden onset of respiratory clinical signs suggestive of acute influenza in a swine herd (i.e. rapid onset of widespread dry hacking cough, sneezing, rhinorrhea, anorexia and lethargy). Each investigation consisted of visiting a candidate farm multiple times to assess herd health, collect samples, and gather additional information including temperature and relative humidity data. Farms were included in the study if the veterinarian made a presumptive diagnosis of IAV infection in the herd or was able to collect samples and confirm the diagnosis within 4 days from the onset of clinical signs, and was able to communicate with the investigators within 3 days from the onset of disease.

The investigators visited the farm within 1 to 3 days of being contacted and the clinical history of the outbreak was reviewed after interviews with farm personnel. During each visit air samples from inside and outside, pig oral fluids and surface samples were collected. The number of visits in each investigation varied based on diagnostic results on samples from the prior visit. If a herd tested negative in oral fluids, the investigation for that herd was concluded in terms of additional visits for most of the cases. The number of visits per farm ranged between 1 and 10 and the longest outbreak was 42 days. A summary of the farm characteristics is shown in Table 1.

Sampling procedures and sampling scheme

Oral fluids.

Oral fluids were collected to determine whether IAV was present in the swine at the time of sampling. Swine oral fluids were sampled using ropes as described previously [25, 26]. Briefly, two 3-strand twisted cotton ropes (WebRiggingSupply.com, Barrington, IL 60010, USA) were placed in 2–4 pens for 20 min for the swine to chew on the ropes. Each rope was estimated to sample approximately between 20 to 50 swine depending on pen size. Oral fluids were extracted from the rope immediately after collection by wringing the wet portion into a plastic bag and then the fluid was transferred into a 5 ml plastic sterile tube, and samples refrigerated at 4°C until processing. Oral fluid samples were processed within 24 hours of collection, centrifuged for 10 min at 5,000 RPM, and stored at -80°C until tested by RRT-PCR (real time reverse transcriptase polymerase chain reaction) and virus isolation.

Air sampling.

Upon arrival at the farm, the first set of air samples was collected outside the barn approximately 25 m upwind (n = 2). After that, the second set was collected downwind (n = 2) from the facility at approximately the same distance, and lastly the final set was collected in the barn interior (n = 2). For the air interior samples, air collectors were placed within the barn at approximately 1/3 and 2/3 the length of the building and 1.5 m above the floor. Each set of samples was collected simultaneously as duplicates. Swine did not have direct contact with the air collectors.

Air samples were collected using a liquid cyclonic collector (Midwest Micro-Tek, Brookings, SD, USA) capable of processing 200 L / min of air [23, 27]. Briefly, 10 mL of minimum essential medium (MEM) solution supplemented with 2% bovine serum albumin (BSA) were added to the collection vessel, and samples collected for 30 minutes. About 4 mL of collection media were recovered for each sample, media were transferred into a plastic vial with a syringe and stored on ice until transport within 12 hours to the laboratory.

Surface sampling.

Surface samples were collected from areas considered to have high contact by humans working in the barns including pen railings (n = 2) and door handles from doors leading into the swine barns (n = 1). Surface samples were collected using a 2”x2” sterile gauze dipped into sterile MEM supplemented with 2% BSA. Sections of 1 m of pen railing with approximately 0.08 m2 (800 cm2) of surface, were wiped for 30 seconds using sterile gloves. Door handles were wiped for 15 seconds and both the exterior and interior handles were sampled. Pigs did not have direct contact with the pen railing as only the top railing was sampled. Gauzes were placed into individual tubes and samples stored on ice for transport and processing within 24 hours.

Oral fluids and surface samples were collected simultaneously at the same time that the air interior was being sampled.

Diagnostic procedures

Oral fluid samples were first screened at the University of Minnesota Veterinary Diagnostic Laboratory for influenza A RNA by a RRT-PCR targeting the matrix gene [28]. Samples with a cycle threshold (ct) value <35 35="" and="" considered="" positive="" suspect="" were="">40 negative. Samples with ct < 40 were further tested using a quantitative RRT-PCR test as described previously [23]. RRT-PCR positive samples were cultured for virus isolation using Madin-Darby Canine Kidney (MDCK) cells [29, 30] and subtyped using the Path-ID Multiplex One-Step RRT-PCR kit (Applied Biosystems, Foster City, CA, USA) and custom subtyping assay primers and probes (Life Technologies) [31].

Swine clinical scores

Swine were visually inspected during each visit by a veterinarian member of the study team. Clinical scores consisted of coughing and sneezing and were measured following previously described procedures [32]. Briefly, the number of cough and sneeze episodes observed in 4 pens during 3 minutes were recorded. A cough or sneeze episode was defined as one or several coughs or sneezes in a sequence by an individual pig. The percentage of coughing or sneezing swine was calculated by dividing the number of swine observed coughing or sneezing by the total number of animals observed in the pens. The total number of swine evaluated in each visit ranged from 100 to 400 depending on pen and barn size.

Environmental conditions

Temperature and relative humidity inside and outside the barns were recorded at the time of collection using a weather meter (Kerstrel 3000, Nielsen-Kellerman, PA, USA).

Statistical and influenza modeling in indoor air and statistical analysis

Statistical analyses were conducted using R programming language [33].

To look for associations between the count of positive samples of each type compared with each other type, we performed pair-wise Kendall’s rank correlation tests, corrected for multiple comparisons with the Bonferroni-Holm adjustment. Correlations between quantity of IAV RNA copies between samples of oral fluids, surface and air inside the barns were also computed using Kendall’s correlation. Correlations of these samples with clinical scores were computed as well. Correlations between quantity of IAV in indoor air with recorded measurements of relative humidity and temperature were also determined.

To compute correlations and modeling of IAV in indoor air, data from four investigations with at least 5 days of samples were used (investigations 5, 9, 10 and 11). Data were limited to the first 21 days after the reported onset given that most of the farms tested negative after that, and the mean indoor air IAV quantity was calculated for each visit. The concentration of IAV in the air inside the barn as a function of time over the outbreak was modeled using a quasipoisson model with log link to appropriately handle both the days at which zeros were recorded and the fact that the variance increased with the quantity of virus detected. Additionally, as the reported day of onset may have been early or late relative to the true progress of the infection, the reported day of onset was allowed to shift relative to the estimated maximum for each investigation to minimize the deviance of the fit.

A quadratic effect was used for day and an additive blocking effect was used to allow each investigation to have a different maximum value; the fitted equation was:

Indoor air quantity = M*exp(-0.035*day—0.082*day^2), where M is the maximum value for that investigation, and day is relative to the day of the maximum.

Results

Clinical signs

Clinical scores of coughing and sneezing were recorded in both IAV positive and negative investigations. Mean scores ranged from 0.83% to 36.71% and 0.33% to 10.27% for sneezing and coughing, respectively (Table 2) and there was variation in the scores throughout the course of the investigations (results not shown).


Eleven suspected IAV outbreak investigations in barns corresponding to 6 farms were identified during the study. There were a total of 49 farm visits, which took place between 2 to 8 days apart for 4 to 42 days after the initial visit. Six of the 11 barn investigations, corresponding to three different farms, were confirmed positive for IAV by RRT-PCR testing in aerosols, surfaces, and/or swine oral fluid samples.

Forty-seven out of 98 (48%) oral fluid samples tested were RRT-PCR positive for IAV while 32 of 84 (38%) pen railing samples, and 35 of 82 (43%) indoor air samples tested positive for IAV (Table 3). There were two door handle samples that tested positive at low levels. All air samples collected outdoors tested negative. There was a significant positive correlation of 0.69 between the count of oral fluid positive samples and air (p = 0.0001), of 0.47 between oral fluids and pen railing (p = 0.009) and 0.42 between indoor air and pen railing (p = 0.01).

IAV was isolated by culture from 19 oral fluid and 18 indoor air samples (Table 4) representing five and four investigations, respectively. H1N1, H1N2 and H3N2 subtypes, and mixtures of these, were identified in both, oral fluid and indoor air samples. Virus isolation of surface samples did not yield positive results.

Viral quantification

Influenza RNA levels in oral fluids, indoor air and pen railing varied between farms and throughout the course of the clinical outbreaks (Table 5). Individual sample viral levels ranged from 0 to 4.03x107 RNA copies/ml in oral fluids, 0 to 4.16x107 RNA copies/m2) in pen railing surface and 0 to 1.25x106 RNA copies/m3 of air in indoor air samples. There was a significant positive correlation of 0.4 between quantity of IAV in the air and oral fluids (p = 0.015) and of 0.372 between quantity of IAV in oral fluids and coughing (p = 0.023) (Table 6). Correlations between quantity of IAV on the pen railing with both the air and oral fluids were not significant (p>0.05).

Environmental conditions

Measured mean indoor temperatures ranged between 19°C and 25°C while relative humidity ranged between 19°C and 25°C. Both of these ranges were within the expected ranges for swine commercial facilities. Correlations between quantity of IAV in indoor air samples with relative humidity and temperature were 0.26 (p = 0.12) and 0.01 (p = 0.93) respectively.

Influenza level modeling

Results of modeling of indoor air levels of IAV are shown in Fig 1 based on results from 4 investigations. The best fit for the reported day of onset relative to the estimated maximum was -11, -11, -7 and -9 days for investigations 10, 11, 5 and 9, respectively. These results indicated a short spread between farms in the duration of IAV detection in the air. The model also showed the best fit for the estimated mean maximum RNA copy viral load (x10^4 RNA copies/m3) with 95% confidence interval for each investigation at 12 (4.5, 31), 38 (21, 68), 60 (38, 97), and 71 (49, 103) for investigations 11, 5, 10, and 9 respectively, indicating differences in the modeled levels of airborne IAV between farms and throughout the duration of an outbreak. Data from oral fluids and surfaces could not be modeled because of a lack of a common pattern in the data obtained.

Discussion

Despite the common occurrence of IAV infections in swine, there is limited information on the levels and persistence of IAV in the air and environment of swine production facilities. This is the first study, to our knowledge, that has quantified and characterized the level of IAV in samples of aerosols and surfaces of swine environments during acute outbreaks of influenza infections in swine. We found that IAV could be isolated from indoor air of commercial swine production facilities, that airborne IAV levels were sustained for periods of 20 days and that there was a correlation between the number of positive samples of each type and the quantity of virus in the swine oral fluids and in the air. Our results provide a first estimation on levels of environmental IAV in swine commercial production facilities, and thus an assessment of potential sources of IAV exposure to swine workers or other pigs.

Detection of IAV in air was sustained throughout the course of the acute outbreaks and lasted approximately 20 days across the studied barns. The peak of detection of virus in air samples occurred between 7 and 11 days into the outbreaks. Maximum airborne levels varied between affected facilities and were in the order magnitude of 104 to 107 RNA copies/m3 of air. We allowed our model to shift relative to the estimated maximum for each investigation given that the reported day may not have been when the infection truly started. Interestingly the IAV detection curves were similar across farms with limited variations in duration which suggests a similar course of disease between farms and, that similar measures could be implemented to minimize risk of IAV infections. There were differences in the levels of IAV found in the air between farms and we speculate that these differences could be due to varying levels of infection and immunity in the swine, type of IAV, number of pigs in the barn, barn volume, ventilation rates and farm and management characteristics. Thus, information from our model can be used to estimate risk of exposure to swine workers, other pigs and help target intervention strategies to mitigate the risk of IAV transmission between pigs and from pigs to people.

A key aspect of determining the risk of IAV transmission is the relationship between number of RNA copies and infectivity. We estimated the ratio of viral particles to TCID50 (tissue culture infectious dose) at 3,000 RNA copies/TCID (results not shown) and based on the mean airborne IAV concentration, our results corresponded to 47 TCID50/m3. Similar TCID50 estimates were obtained in a health center [34] and although it is unclear how our results relate to transmission to swine or people, we speculate that they represent a significant risk to both people and swine, since IAV was readily isolated from the air multiple times throughout the duration of the outbreaks. Overall, our results provide evidence that air can be an important route of IAV transmission in swine production facilities. Furthermore there was an association between the levels of IAV in oral fluids and the air indicating a direct relationship between level of virus in the swine and potential exposure through aerosols. However, further studies are needed to fully understand the relationship between airborne IAV levels and transmission.

We isolated a mixture of genetically diverse IAV from swine and air samples representing the three most common IAV subtypes in swine, H1N1, H1N2 and H3N2. However, in contrast to a prior study [23], we did not detect IAV in air samples collected outside swine facilities. This difference is probably a result of sampling frequency and our investigations being carried out under colder environmental conditions and larger distances from the air exhaust site that likely negatively impacted both distribution of the virus and viral survivability. Therefore more research is needed to fully characterize the risk of IAV transmission outside swine production facilities.

IAV genetic material was also detected in surfaces, in particular on pen railings although we could not isolate IAV from surfaces. Source of IAV genetic material in the surfaces may be the result of deposition of airborne IAV particles. Whether inability to culture IAV from surfaces was due to lack of viable IAV in surfaces or conditions of sampling or limited sensitivity of the culture technique could not be assessed, but we speculate that viable IAV can still be present on surfaces from swine barns although with less quantity than in the air due to environmental conditions such as desiccation or preservation in dust. In deed surface contamination with viable IAV was shown in a live animal market housing swine [3]. Therefore, precautions to prevent exposure to contaminated surfaces should still be followed.

Clinical signs of coughing and sneezing can be an indicator of IAV infections and IAV can be found in both clinically and subclinically infected swine [2]. We found an association between coughing and levels of IAV in the swine but not in air or on surfaces. We did not have a common pattern on the presentation and evolution of clinical signs across farms. This could be due to presence of concomitant infections or farm factors not measured in this study. Overall our results indicate that clinical signs in swine cannot be used as a reliable indicator of the levels of IAV present in the environment and thus they should not be used to predict risk of exposure to people.

The farm investigations in this study were selected by convenience based on recognized acute clinical signs in the swine herds, thus results from this study should be interpreted carefully when extrapolating them to endemically infected farms. Furthermore data in this study was obtained from a limited number of farms which do not represent the full spectrum of types of production facilities and management conditions encountered in the swine industry. Thus further research is needed to characterize the levels and risk of IAV environmental exposure in non-outbreak situations and production facilities representative of different management and environmental conditions.

Lastly, although environmental conditions of relative humidity and temperature have been associated with IAV viability [35], in this study we did not see an association between quantity of IAV in air or on surfaces and relative humidity or temperature. This lack of association could be the result of the relatively stable indoor conditions throughout our study. Producers put a great deal of effort into maintaining a relatively stable temperature and relative humidity within these facilities to maintain the health and safety of the animals.

In summary, our results indicate that during outbreaks of IAV in swine, the air and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people. Further studies are needed to evaluate the viability of IAV in the environment, evaluate strategies to mitigate the risk of indirect transmission of IAV, confirm the impact of personal protective equipment on exposure risk to people and explore strategies to prevent bidirectional transmission of IAV between humans and swine. Information from this study should help to develop evidence-based guidelines to minimize the impact of IAV infections on swine production.

Acknowledgments

Funding was provided by the National Pork Board. The authors would like to acknowledge the contributions of My Yang, Andres Diaz and Macarena Cortez for technical assistance.

Author Contributions

Conceived and designed the experiments: MT SGG PR. Performed the experiments: VN MT. Analyzed the data: AR VN MT. Contributed reagents/materials/analysis tools: SGG PR BP AR. Wrote the paper: MT VN. Reviewed critically the manuscript: SGG PR BP AR.

References

1. Myers KP, Olsen CW, Gray GC. Cases of swine influenza in humans: A review of the literature. Clinical Infectious Diseases. 2007;44(8):1084–8. doi: 10.1086/512813 pmid:WOS:000244928200012.
View Article PubMed/NCBI Google Scholar
2. Corzo CA, Culhane M, Juleen K, Stigger-Rosser E, Ducatez MF, Webby RJ, et al. Active Surveillance for Influenza A Virus among Swine, Midwestern United States, 2009–2011. Emerging Infectious Diseases. 2013;19(6):954–60. doi: 10.3201/eid1906.121637 pmid:WOS:000328173500015.
View Article PubMed/NCBI Google Scholar
3. Choi MJ, Torremorell M, Bender JB, Smith K, Boxrud D, Ertl JR, et al. Live animal markets in Minnesota: a potential source for emergence of novel influenza A viruses and interspecies transmission. Clin Infect Dis. 2015. Epub 2015/08/01. doi: 10.1093/cid/civ618 pmid:26223994.
View Article PubMed/NCBI Google Scholar
4. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. Journal of Virology. 1999;73(10):8851–6. pmid:WOS:000082554300105.
View Article PubMed/NCBI Google Scholar
5. Webby RJ, Rossow K, Erickson G, Sims Y, Webster R. Multiple lineages of antigenically and genetically diverse influenza A virus co-circulate in the United States swine population. Virus Research. 2004;103(1–2):67–73. doi: 10.1016/j.virusres.2004.02.015 pmid:WOS:000222065200012.
View Article PubMed/NCBI Google Scholar
6. Karasin AI, Schutten MM, Cooper LA, Smith CB, Subbarao K, Anderson GA, et al. Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Research. 2000;68(1):71–85. doi: 10.1016/s0168-1702(00)00154-4 pmid:WOS:000088282200008.
View Article PubMed/NCBI Google Scholar
7. Forgie SE, Keenliside J, Wilkinson C, Webby R, Lu P, Sorensen O, et al. Swine Outbreak of Pandemic Influenza A Virus on a Canadian Research Farm Supports Human-to-Swine Transmission. Clinical Infectious Diseases. 2011;52(1):10–8. doi: 10.1093/cid/ciq030 pmid:WOS:000286214200003.
View Article PubMed/NCBI Google Scholar
8. Nelson MI, Gramer MR, Vincent AL, Holmes EC. Global transmission of influenza viruses from humans to swine. Journal of General Virology. 2012;93:2195–203. doi: 10.1099/vir.0.044974–0 pmid:WOS:000310043400012.
View Article PubMed/NCBI Google Scholar
9. Nelson MI, Wentworth DE, Culhane MR, Vincent AL, Viboud C, LaPointe MP, et al. Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology. 2014;88(17):10110–9. doi: 10.1128/jvi.01080-14 pmid:WOS:000341232300051.
View Article PubMed/NCBI Google Scholar
10. Jhung MA, Epperson S, Biggerstaff M, Allen D, Balish A, Barnes N, et al. Outbreak of Variant Influenza A(H3N2) Virus in the United States. Clinical Infectious Diseases. 2013;57(12):1703–12. doi: 10.1093/cid/cit649 pmid:WOS:000327720400008.
View Article PubMed/NCBI Google Scholar
11. Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459(7250):1122–U107. doi: 10.1038/nature08182 pmid:WOS:000267636700042.
View Article PubMed/NCBI Google Scholar
12. Gray GC, McCarthy T, Capuano AW, Setterquist SF, Olsen CW, Alavanja MC. Swine workers and swine influenza virus infections. Emerg Infect Dis. 2007;13(12):1871–8. Epub 2008/02/09. doi: 10.3201/eid1312.061323 pmid:18258038; PubMed Central PMCID: PMCPMC2876739.
View Article PubMed/NCBI Google Scholar
13. Myers KP, Olsen CW, Setterquist SF, Capuano AW, Donham KJ, Thacker EL, et al. Are swine workers in the United States at increased risk of infection with zoonotic influenza virus? Clinical Infectious Diseases. 2006;42(1):14–20. doi: 10.1086/498977 pmid:WOS:000233698900009.
View Article PubMed/NCBI Google Scholar
14. Allerson MW, Cardona CJ, Torremorell M. Indirect Transmission of Influenza A Virus between Pig Populations under Two Different Biosecurity Settings. Plos One. 2013;8(6):9. doi: 10.1371/journal.pone.0067293 pmid:WOS:000320846500134.
View Article PubMed/NCBI Google Scholar
15. Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. Transmission of influenza A in human beings. Lancet Infectious Diseases. 2007;7(4):257–65. doi: 10.1016/s1473-3099(07)70029-4 pmid:WOS:000245120700027.
View Article PubMed/NCBI Google Scholar
16. Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R, et al. Measurement of Airborne Influenza Virus in a Hospital Emergency Department. Clinical Infectious Diseases. 2009;48(4):438–40. doi: 10.1086/596478 pmid:WOS:000262585700011.
View Article PubMed/NCBI Google Scholar
17. Tellier R. Aerosol transmission of influenza A virus: a review of new studies. Journal of the Royal Society Interface. 2009;6:S783–S90. doi: 10.1098/rsif.2009.0302.focus pmid:WOS:000271957900009.
View Article PubMed/NCBI Google Scholar
18. Mubareka S, Lowen AC, Steel J, Coates AL, Garcia-Sastre A, Palese P. Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model. Journal of Infectious Diseases. 2009;199(6):858–65. doi: 10.1086/597073 pmid:WOS:000263677900013.
View Article PubMed/NCBI Google Scholar
19. Munster VJ, de Wit E, van den Brand JMA, Herfst S, Schrauwen EJA, Bestebroer TM, et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Ferrets. Science. 2009;325(5939):481–3. doi: 10.1126/science.1177127 pmid:WOS:000268255100058.
View Article PubMed/NCBI Google Scholar
20. Yee KS, Cardona CJ, Carpenter TE. Transmission of low-pathogenicity avian influenza virus of subtype H6N2 from chickens to Pekin ducks and Japanese quail (Coturnix coturnix japonica). Avian Pathology. 2009;38(1):59–64. doi: 10.1080/03079450802632023 pmid:WOS:000262514600010.
View Article PubMed/NCBI Google Scholar
21. Schulman JL. Experimental transmission of influenza virus infection in mice. IV. Relationship of transmissibility of different strains of virus and recovery of airborne virus in the environment of infector mice. J Exp Med. 1967;125(3):479–88. Epub 1967/03/01. pmid:6016901; PubMed Central PMCID: PMCPMC2138293.
View Article PubMed/NCBI Google Scholar
22. Loeffen WLA, Stockhofe N, Weesendorp E, van Zoelen-Bos D, Heutink R, Quak S, et al. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines. Veterinary Microbiology. 2011;152(3–4):304–14. doi: 10.1016/j.vetmic.2011.05.027 pmid:WOS:000294937500012.
View Article PubMed/NCBI Google Scholar
23. Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns. Plos One. 2013;8(8). doi: 10.1371/journal.pone.0071444 pmid:WOS:000323124000058.
View Article PubMed/NCBI Google Scholar
24. Corzo CA, Allerson M, Gramer M, Morrison RB, Torremorell M. Detection of Airborne Influenza A Virus in Experimentally Infected Pigs With Maternally Derived Antibodies. Transboundary and Emerging Diseases. 2014;61(1):28–36. doi: 10.1111/j.1865-1682.2012.01367.x pmid:WOS:000329310800005.
View Article PubMed/NCBI Google Scholar
25. Prickett J, Simer R, Christopher-Hennings J, Yoon KJ, Evans RB, Zimmerman JJ. Detection of Porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: a longitudinal study under experimental conditions. Journal of Veterinary Diagnostic Investigation. 2008;20(2):156–63. pmid:WOS:000262533700003.
View Article PubMed/NCBI Google Scholar
26. Romagosa A, Gramer M, Joo HS, Torremorell M. Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non-vaccinated pigs. Influenza and Other Respiratory Viruses. 2012;6(2):110–8. doi: 10.1111/j.1750-2659.2011.00276.x pmid:WOS:000300689300006.
View Article PubMed/NCBI Google Scholar
27. Dee S, Otake S, Oliveira S, Deen J. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Veterinary Research. 2009;40(4):13. doi: 10.1051/vetres/2009022 pmid:WOS:000267963400009.
View Article PubMed/NCBI Google Scholar
28. Slomka MJ, Densham ALE, Coward VJ, Essen S, Brookes SM, Irvine RM, et al. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza and Other Respiratory Viruses. 2010;4(5):277–93. doi: 10.1111/j.1750-2659.2010.00149.x pmid:WOS:000280976100005.
View Article PubMed/NCBI Google Scholar
29. Detmer SE, Patnayak DP, Jiang Y, Gramer MR, Goyal SM. Detection of Influenza A virus in porcine oral fluid samples. Journal of Veterinary Diagnostic Investigation. 2011;23(2):241–7. pmid:WOS:000288838300007.
View Article PubMed/NCBI Google Scholar
30. Detmer S, Gramer M, Goyal S, Torremorell M, Torrison J. Diagnostics and Surveillance for Swine Influenza. In: Richt JA, Webby RJ, editors. Swine Influenza. Current Topics in Microbiology and Immunology. 370. Berlin: Springer-Verlag Berlin; 2013. p. 85–112.
31. Zhang JQ, Harmon KM. RNA Extraction from Swine Samples and Detection of Influenza A Virus in Swine by Real-Time RT-PCR. In: Spackman E, editor. Animal Influenza Virus, Second Edition. Methods in Molecular Biology. 1161. Totowa: Humana Press Inc; 2014. p. 277–93.
32. , , . Monitoramentos sanitarios. Goiania: Canone Editorial; 2007.
33. The R Project for Statistical Computing. Vienna, Austria: Foundation for Statistical Computing; 2008.
34. Yang W, Elankumaran S, Marr LC. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. Journal of the Royal Society Interface. 2011;8(61):1176–84. doi: 10.1098/rsif.2010.0686 pmid:WOS:000292083300010.
View Article PubMed/NCBI Google Scholar
35. Irwin CK, Yoon KJ, Wang C, Hoff SJ, Zimmerman JJ, Denagamage T, et al. Using the Systematic Review Methodology To Evaluate Factors That Influence the Persistence of Influenza Virus in Environmental Matrices. Applied and Environmental Microbiology. 2011;77(3):1049–60. doi: 10.1128/aem.02733-09 pmid:WOS:000286597100041.

lunes, 21 de noviembre de 2016

CANINE PARVOVIRUS: CURRENT PERSPECTIVE. S. Nandy, M. Kumar 2012

Canine Parvovirus: Current Perspective


. 2010 Jun; 21(1): 31– 44.

Introduction

Canine parvovirus 2, the causative agent of acute hemorrhagic enteritis and myocarditis in dogs, is one of the most important pathogenic viruses. It is a highly contagious and often fatal disease. CPV-2 was first recognized in 1977 and since then it has been well established as an enteric pathogen of dogs throughout the world with high morbidity (100%) and frequent mortality up to 10% []. CPV is believed to have originated as a host range variant from feline panleucopenia virus (FPV), include a direct mutation from FPV, a mutation from a FPV vaccine virus and the adaptation to the new host dog via non-domestic carnivores, like mink and foxes. The disease is characterized by two prominent clinical forms (i) enteritis with vomition and diarrhea in dogs of all ages [] (ii) myocarditis and subsequent heart failure in pups of less than 3 months of age []. The virus was named CPV-2 in order to differentiate it from a closely related parvovirus of canine known as CPV-1 or minute virus of canine (MVC). MVC, a completely different parvovirus, had not been associated with natural disease until 1992. MVC may cause pneumonia, myocarditis and enteritis in young pups or transplacental infections in pregnant dams, with embryo resorptions and fetal death []. About 30 confirmed cases of CPV-1 have been reported in USA, Sweden, Italy, Germany and more recently in Japan []. The CPV-2 infections have been emerged to be a problem in dogs in recent times around the world. The disease has also been reported in high proportions in dogs in India with high level of casualties even in vaccinated populations. The disease is highly infectious and is spread from dog to dog by direct or indirect contact with their faeces. Over the years, a number of diagnostic assays both serological and molecular have been developed for prompt, precise and sensitive diagnosis of the disease. Again, both inactivated and live attenuated CPV vaccines both as monovalent and along with vaccines against other diseases have been developed and used for the control of the disease. However, in spite of proper vaccination of animals, vaccines failures have been reported due to presence of maternal antibodies and emergence of new variants. So, this review on CPV is aimed to provide detailed informations about the disease including diagnosis, immunoprophylaxis, treatment, etc. for the scientific fraternity, students, teachers, diagnosticians, practitioners, pet owners, kennel club owners, pet shop owners, defense personnel and lastly the general public so that it can be managed and controlled in a highly scientific and efficient manner [].

Etiology

‘Parvo’ means small (Latin), canine parvovirus belongs to genus Parvovirus and family Parvoviridae. The genome is a single stranded negative sense DNA having size of 5.2 Kb [] in length which has two promoters resulting in the expression of three structural (VP1, VP2 and VP3) and two non-structural proteins (NS1 and NS2) through alternate splicing of the viral mRNAs. VP2 (64 kDa) is an NH2-terminally truncated form of VP1 (84 kDa) and is the major component of the capsid. VP3 is derived from VP2 by posttranslational proteolytic cleavage and is present only in complete (DNA-containing) virions. Empty particles do not contain VP3 protein. Trypsin treatment of full particles cleaves VP2 to VP3 protein. CPV-2 has icosahedral symmetry, 25 nm in diameter and nonenveloped with a linear, single stranded DNA genome. The crystal structures of CPV-2 have been determined and their basic capsid organizations are similar. The 60 protein subunits, of which about 5–6 copies of VP1 and 54–55 copies of VP2 that make up the capsid have a common structure, arranged with T = 1 icosahedral symmetry []. There is some evidence that the VP1 terminus is internal and may help neutralize the DNA. The main structural motif is an eight-stranded, antiparallel β-barrel, which also has been found in most other viral capsid structures. The β-barrel motif contains only approximately one-third of the amino acid composition of VP2, the major structural protein in most parvovirus that comprises about 90% of the capsid []. The remaining two-thirds is present as large loops connecting the strands of the β-barrel. The loops form much of the capsid surface, onto which a number of biologic features, such as host species and tissue tropism, receptor binding and antigenic properties have been structurally and genetically mapped []. Replication occurs in the nucleus of dividing cells and infection leads to large intranuclear inclusion bodies. Other characteristic features of the parvoviral capsid include spike like protrusions at the icosahedral threefold axes, a 15-Å canyon-like depression about the fivefold axes and a dimple-like depression at the icosahedral twofold axes. Antigenic regions have been mapped to the threefold protrusion whereas the twofold depression has been implicated in the attachment of host cell factors []. The particle has a molecular weight (MW) of 5.5 to 6.2 × 106 Da. Approximately 50% of the mass is protein, and the remainder is DNA. Because of the relatively high DNA-to-protein ratio, the buoyant density of the intact virion in cesium chloride (CsCl) is 1.39–1.42 g/cm3. Finally, the sedimentation coefficient of the virion in neutral sucrose gradients is 110–122 S [].

Emergence of Canine Parvovirus Strains and its Distribution

During the early 1970s, a new infectious disease of pups, characterized by either gastroenteritis or myocarditis, was observed worldwide. A small, round, non-enveloped virus was observed by electron microscopy in stool specimens and in tissues of affected animals. Subsequently, a novel parvovirus was isolated both in canine and feline cell cultures []. The virus was named CPV-2. It was speculated that CPV-2 might have emerged at least 10 years before the clinical disease was recognized []. It was deduced that beneficial mutations (to the virus) had accumulated during that period until a virus emerged from an unknown source that infected a new host (the dog) and acquired the ability to spread []. After a period of adaptation, the virus became highly infectious for dogs, resulting in the pandemic that became evident in 1978–1979. The rapid rate at which parvoviruses accumulate mutations in vivo similar to observations made in studies on CPV-2 vaccinal virus, where mutations were found to accumulate rapidly during passage in tissue culture [].
CPV-2 and FPV are significant pathogens for domestic dogs and cats as well as for various wild carnivore species. CPV-2 and FPV are grouped along with other viruses such as mink enteritis virus (MEV), raccoon parvovirus (RPV), raccoon dog parvovirus (RDPV) and blue fox parvovirus (BFPV) in the so-called feline parvovirus subgroup []. Phylogenetic analysis revealed that all CPV variants were descended from a single ancestor which emerged during the mid-1970s, which was closely related to the long-known feline panleukopenia virus (FPV) which infects cats, minks, and raccoons but not dogs or cultured dog cells []. There is more than 98% sequence homology and as few as six coding nucleotide differences in the VP2 gene at positions 3025, 3065, 3094, 3753, 4477 and 4498 []. The biological effects of these few genomic changes were sufficient for CPV-2 to acquire canine host range, but lost the ability to replicate in feline host []. Two differences at VP2 residues 93 from Lys to Asn and 323 from Asp to Asn between FPV and CPV could introduce the canine host range, a CPV-specific antigenic epitope []. Despite the close relationship to FPV, CPV type 2 isolates did not replicate in cats, and this host range was determined at least in part by VP2 residues 80, 564, and 568 which are in close proximity in the capsid structure [].
Nucleotide substitutions in CPV-2 continued to be observed, but their biological significance is not known. In 1979, a CPV variant (CPV type 2a) emerged that spread worldwide within 1 year due to antigenic drift and replaced the CPV type 2 strains. CPV type 2a contained five substitutions in the capsid sequence compared to CPV type 2, including changes of VP2 residues 87 from Met to Leu, 300 from Ala to Gly, and 305 from Asp to Tyr []. CPV type 2a isolates were antigenically different from CPV type 2 and also infected and caused disease in cats []. An antigenic variant of CPV type 2a (CPV type 2b) was recognized in 1984, and it differed in an antigenic epitope as a result of the substitution of VP2 at residue 426 from Asn to Asp and at residue 555 from Ile to Val []. These CPV-2a and CPV-2b are the predominant strains currently circulating in the different dog population, and have completely replaced the original CPV-2 virus worldwide []. Both the antigenic types coexist in different ratio in dog populations around the world. The regaining of feline host range by CPV-2a and CPV-2b was likely to be a selective advantage of the virus [].
In 2000, another mutant called CPV-2c was reported in dogs from Italy and it differs from CPV-2b by one amino acid at 426 position from Asp to Glu [] and subsequently from Vietnam, Spain, United Kingdom, South America, North America, Portugal and India []. The mutation Glu-426 affects the major antigenic region located over the three-fold spike of CPV-2 capsid. Monoclonal antibodies have been developed and used for detection of different novel mutants of CPV-2 []. In addition, sequence analysis of recent CPV-2a isolates has revealed a reversion at position 555 to the sequence of FPV/CPV-2, Ile to Val. This mutation restricts the differences among the antigenic variants CPV-2a, 2b and 2c to only one amino acid at position 426, which are Asn in CPV-2a, Asp in CPV-2b and Glu in the CPV-2c. Most CPV-2 strains spreading currently in Italy differ only in this residue []. There is no evidence that CPV-2c is a more serious threat to either shelter or owned dogs than the other CPV strains. It is not possible to distinguish CPV-2c from CPV-2b or 2a isolates based on clinical signs. CPV-2c causes similar clinical signs as the previously known strains, including mucoid or hemorrhagic diarrhea, leukopenia, and lymphopenia []. Although a few reports suggest that CPV-2c may cause more severe clinical signs and mortality particularly in adult dogs than type 2a and 2b, others describe less-severe disease and lower mortality rates in CPV-2c infected dogs [].

Incidence

Canine parvovirus infection occurs worldwide in domestic dogs and other members of the dog family. Incidence is higher in animal shelters, pet stores, and breeding kennels. CPV can affect dogs at any age. Severe infection is most common in puppies between 6 weeks and 4 months old. All breeds of dogs are susceptible. The crossbreds are less susceptible in comparison to pure breeds like Rottweilers, Doberman Pinchers, English Springer Spaniels and German Shepherd, the exception to this being Toy Poodles and Cocker Spaniels []. CPV affects only dogs, and cannot be transmitted to humans or other species. If a dog survives the first 4 days, they will usually recover rapidly and become immune to the virus for life. Most puppies die without medical treatment. The CPV infection is more severe in young puppies especially those younger than 3 months of age []. All infected dogs may not necessarily exhibit clinical manifestations but they may shed the virus in feces during the acute phase of enteric fever and show significant rise in the serum antibody titers [].
The different antigenic variants of CPV-2 are prevalent in varying proportion in different countries. The prevalence of CPV-2b has been reported by various authors in several countries namely Brazil [], USA [], Japan [], Switzerland [] and South Africa []. Contrastingly, CPV-2a was found to be the prevalent antigenic type in France, Taiwan and Italy []. However both CPV-2a and CPV-2b have been found to be distributed in equal proportion in Spain [] and U.K. []. CPV-2c has also been found in Vietnam [], Spain [], United Kingdom [], South America [], North America [].
CPV-2 for the first time was isolated in India in 1982 []. After that, a large number of CPV outbreaks have been reported from different parts of India. The incidence of CPV-2 variants in dogs were reported from different states viz. Kerala [], Assam [], Tamil Nadu [], Orissa [], West Bengal [], Pondicherry [], Haryana [] and Uttar Pradesh []. The prevalence of CPV-2a has been documented in 2001 in India []. It was also found that CPV-2b variants are more common in Northern India especially in Bareilly region compared to CPV-2a []. However, these observations were in contrast with the findings of a researcher [] who reported that CPV-2a is the major antigenic variant prevalent in Southern and Central India, based on VP2 gene sequences. Further, based on VP2 gene sequences, it was revealed that the Indian isolates formed a separate lineage distinct from the South East Asian isolates and the canine parvovirus isolates in India appear to have evolved independently without any distinct geographical patterns of evolution []. Occurrence of CPV-2c was first reported in India in 2010 [] based on the sequence analysis of CPV-2b positive sample. Its presence in India supports the assumption that CPV-2c is reaching a worldwide distribution and provides new information to understand the evolution of antigenic variants of CPV-2 [].

Transmission

Canine parvovirus spreads through oral contact with infected faeces or contaminated surfaces (e.g., soil, shoes, dog toys etc.). The source of CPV infection is faecal waste from infected dogs. It has been diagnosed wherever groups of dogs are found: dog shows, obedience trials, breeding and boarding kennels, pet shops, animal shelters, parks and playgrounds []. Dogs that are confined to a house or yard and are not in contact with other dogs have much less chance of exposure to CPV. It’s easily transmitted via the hair or feet of infected dogs and also by contaminated objects such as cages or shoes. CPV is hardy and can remain in faeces-contaminated ground for 5 months or more if conditions are favorable. The faeces of infected dogs contaminate the places such as Veterinary hospitals, pet shops, boarding kennels and commercial breeding establishments. These contaminated premises serve as source of secondary infection to the susceptible canine population [].

Pathogenesis

The virus enters the body through the mouth as the puppy cleans itself or eats food off the ground or floor. There is a 3–7 day incubation period before the puppy seems obviously ill. Upon entering into the body, it replicates to large numbers in the lymph nodes []. After a couple of days, significant amounts of virus have been released free into the bloodstream. Over the next 3–4 days, the viruses go to new organs containing the rapidly dividing cells like the bone marrow and the delicate intestinal cells and form large eosinophilic intranuclear inclusion bodies. Within the bone marrow, the virus is responsible for destruction of young cells of the immune system and then knocking out the body’s best defense mechanism. The virus causes most devastating effects in the gastro-intestinal tract. Canine parvoviral infections are characterized by a drop in white blood cell count due to the bone marrow infection.
It is in the GI tract where the heaviest damage occurs. The normal intestine possesses little finger-like protrusions called “villi.” Having these tiny fingers greatly increases the surface area available for the absorption of fluid and nutrients. To make the surface area available for absorption, the villi possess “microvilli” which are microscopic protrusions. The cells of the villi are relatively short-lived and are readily replaced by new cells. The source of the new cells is the rapidly dividing area at the foot of the villi called the Crypts of Lieberkuhn []. It is right at the crypt where the parvovirus strikes. Without new cells coming from the crypt, the villus becomes blunted and unable to absorb nutrients and diarrhea results. The barrier separating the digestive bacteria from the blood stream breaks down. The diarrhea becomes bloody and bacteria can enter the body causing widespread infection. The virus kills one of two ways, diarrhea and vomiting lead to extreme fluid loss and dehydration until shock and death result. Loss of the intestinal barrier allows bacterial invasion of potentially the entire body.

Symptoms of Canine Parvovirus

Canine parvovirus (CPV) is the most dangerous and contagious virus that affects unprotected dogs. When it was first discovered in 1978, most of the puppies under 5 months old and 2–3% of older dogs died from CPV. CPV infection is now considered most threatening to puppies between the time of weaning and 6 months of age. Adult dogs can also contract the virus, although it’s relatively uncommon.
Diarrhoea occurs in dogs of any age but appears in serious proportions in pups. Dogs with enteritis act like they are in extreme pain. Early symptoms are depression, loss of appetite, vomiting, high fever and severe diarrhea (Fig. 1). There is slight rise of temperature in the initial stage of the disease but gradually turn to subnormal level with advancement of vomiting and diarrhoea []. There is no consistent character of the stool, it may be watery, yellow in color or tinged with frank blood in severe cases. Rapid dehydration is a danger, and dogs may continue to vomit and have diarrhoea until they die, usually 3 days after onset of symptoms. The course of illness is also highly variable depending on the infectious dose of the virus and clinical signs usually develop from 3 to 5 days following infection and typically persist for 5–7 days []. The morbidity and mortality vary according to the age of the animals, the severity of challenge and the presence of intercurrent disease problems. Puppies can die suddenly of shock as early as 2 days into the illness [].
Fig. 1
A case of canine parvovirus infection with severe diarrhea and vomiting undergoing treatment
The second form of CPV is cardiac syndrome, or myocarditis, which can affect puppies under 3 months old []. Within an infected litter, 70% pups will die in heart failure by 8 weeks of age and the remaining 30% will have pathological changes which may result in death many months or even years later. The most dramatic manifestation of CPV-2 myocarditis is the sudden death in young pups usually about 4 weeks of age []. The collapsed dying pup may have cold extremities, pale mucosae and show gasping respiration or terminal convulsions. Acute heart failure with respiratory distress occurs in pups between 4 and 8 weeks of age. Subacute heart failure occurs in older pups usually 8 weeks or more. They are tachypnoeic or dyspnoeic especially on exercise. The abdomen is swollen with hepatomegaly and ascitic fluid is blood tinged []. There is tachycardia, sometimes with arrhythmias and a weak pulse. Most animals die due to cardiogenic shock. However, if the animal survives it will suffer from chronic myocardial and circulatory complications []. There is no diarrhoea because the virus multiplies rapidly in muscle cells of the immature heart.

Pathological Changes

The pathological changes produced by CPV reflect the requirement of the virus for dividing cells. The macroscopic lesions of CPV infection are highly variable and relatively non-specific. In the enteric disease, lesions may be distributed segmentally in the gastrointestinal tract. The lesions usually affect the jejunum and ileum but not the duodenum and colon. Affected segments may be somewhat flaccid with subserosal hemorrhage or congestion []. The lumen of the intestine is often empty but may contain variable watery ingesta. The mucosal surface is often congested but devoid of exudates. Mesenteric lymph nodes are frequently enlarged and edematous. Multifocal petechial hemorrhages are often seen within the cortex of a cut section of affected lymph nodes during acute stage of the disease and leucopenia is also common. Thymic cortical necrosis and atrophy are common findings in young dogs [].
In cases of parvoviral myocarditis, gross lesions include cardiac enlargement with prominent dilatation of the left atrium and ventricle. The lungs often do not collapse when cut although white frothy fluid may be present in the trachea and bronchi. Evidence of pulmonary edema and passive congestion of the liver is often present, with the variable degree of ascites and pleural effusion. The ventricular myocardium frequently contains visible white streaks associated with the presence of a cellular infiltrate. Some pups may die from chronic decompensating left sided heart failure weeks or months after some of their littermates died suddenly with acute myocarditis. Pulmonary hypertension and myocardial dilation with scarring is often regarded as the cause of delayed death [].

Histopathology

Microscopic lesions associated with CPV infection are initially confined to areas of proliferating cell population. In the enteric form of the disease, the early lesions consist of necrosis of the crypt epithelial cells []. Crypt lumenae are often dilated, lined by attenuated epithelium and filled with necrotic debris. There may be occasional intranuclear eosinophilic inclusion bodies in intact crypt epithelial cells. The villi and lamina propria may collapse completely as a result of the loss of crypt epithelium and the failure to replace sloughed villous epithelial cells. These lesions may be extensive or diffuse. Loss of digestive epithelium and absorptive surface area presumably results in diarrhoea caused by combined effect of maldigestion and malabsorption. Death may follow as a result of dehydration, electrolyte imbalance, endotoxic shock or secondary septicemia.
The regeneration of intestinal epithelial cells has been reported even in fatal cases. The remaining intestinal crypts are elongated and lined by hyperplastic epithelium with a high mitotic index. The shortened villi are covered by immature epithelial cells and adjacent villi are often fused. Necrosis and depletion of small lymphocytes is seen in Peyer’s patches, the germinal centers of mesentric lymph nodes, and in splenic nodules early in the course of infection []. Diffuse cortical necrosis of the thymus occurs in young dogs, with an associated loss in thymic mass. Later in the disease, there is evidence of regenerative lymphoid hyperplasia.

Canine Parvovirus Variants in Wild Animals

CPV-2 is closely related to FPV with more than 98% genome homology, and as few as six coding nucleotide differences in the VP2 protein positions: 3025, 3065, 3094, 3753, 4477, 4498 []. The biological effects of these few genomic changes were enormous, in that CPV-2 acquired the canine host range, but lost the ability to replicate in cats []. The host ranges of CPV-2 and FPV are complex and differ in vitro and in vivo. FPV replicates in feline cells in vitro and in cats in vivo, but does not infect canine cells in vitro and shows only a restricted tissue spectrum in vivo. CPV-2 does replicate in canine and feline cells in vitro, but the in vivo replication is restricted to canides []. No feline host has ever been described to be susceptible to CPV-2, although it replicates to low titers in mink which is a mustelid, after experimental inoculation []. After its emergence CPV spread to most populations of domestic and wild carnivores. In 1976, reports from Belgium and the Netherlands indicated that the virus had spread throughout the world infecting wild and domestic canids []. Clinical signs of parvovirus disease were observed in captive and free-ranging coyotes and DNA sequence analysis of the VP2 gene showed the virus to be CPV-2. Raccoons, in contrast, were shown to be resistant to CPV-2 infection [].
Serologic prevalence, infection or clinical signs of disease due to CPV viruses were found in jackals (Canis aureusCanis adustusCanis mesomelas), grey foxes (Urocyon littoralis), the San Joaquin kit fox, Asiatic raccoon dogs (Nyctereutes procyonoides) and the crab eating fox (Cerdocyon thous) in the Kenya []. Canine parvovirus infections were reported in farmed raccoon dogs and confirmed to be CPV-2 by DNA sequence analysis of the VP2 gene []. CPV-2a and CPV-2b DNA sequences were recovered from six of nine cheetahs, as well as from one Siberian tiger, all showing clinical symptoms of parvovirus disease []. The very high prevalence of CPV-2a/2b infections in large cats compared to domestic cats may suggest a higher susceptibility of the species for these virus types []. Since vaccination of domestic cats and dogs is very effective in preventing disease, parvovirus vaccination of all domestic and non-domestic carnivores at risk of infection is highly recommended. CPV-2c type viruses have been isolated from leopard cats but not from domestic cats in the same area. Phylogenetic analysis indicated that CPV-2c(a) and CPV-2c(b) have been evolved from CPV-2a and CPV-2b to adapt to leopard cats and lost neutralizing epitopes compared to former serotypes CPV-2a and CPV-2b [].

Diagnosis

A presumptive diagnosis of CPV enteritis can be made based on the clinical signs such as depression, vomiting, diarrhoea, anorexia and fever. The tests should be performed on any dog with diarrhoea that is also exhibiting signs of systemic disease: vomiting, lethargy, fever, loss of appetite, dehydration or dogs with unusually copious, smelly/bloody diarrhoea, or any dog with known exposure to parvovirus within the preceding 14 days of developing diarrhoea.
The diagnostic tests which were employed earlier include HA (Haemagglutination) [], Electron Microscopy (EM) [], virus isolation using in MDCK, CRFK or A 72 cell line [], Enzyme Linked Immunosorbent Assay (ELISA) [], Latex Agglutination Test (LAT) [], Fluorescent Antibody Test (FAT), CIE test [], Virus neutralization test, PCR and RE digestion [], real time PCR [], loop-mediated isothermal amplification (LAMP) [], nucleic acid hybridization or dot blot, in situ hybridization, nucleic acid sequencing etc. [], but they have varying degree of sensitivity and specificity and sometimes yielding false positive cases.

Haemagglutination (HA) Assay

The HA is simple and rapid test for detecting CPV in faeces and this test was performed using porcine, rhesus monkey or feline RBC’s []. The viral HA titer commonly ranges between 128 and 10,240, between PI days 4 and 7, or when the signs of enteritis commence. The HA activity generally ceases between PI days 7 and 9 []. Though it is less sensitive than virus isolation in A-72 cell line, HA test on stool samples is rapid and simple to perform. The nonspecific HA titer (<32 113="" be="" brief="" but="" by="" chcl="" common="" enetron="" fluorocarbon="" freon="" is="" it="" may="" of="" or="" reduced="" samples="" span="" style="bottom: -0.25em; font-size: 0.8461em; line-height: 1.6363em; position: relative; top: 0.25em; vertical-align: baseline;" treatment="" with="">3
 (10% V/V). A modification of the HA test involves the adsorption of the CPV in faecal samples onto RBCs at 4°C. Antigen is eluted from cells at 37°C and tested for HA activity []. Although HA test is sensitive, relatively simple and inexpensive to perform, it has several disadvantages, including requirement of a continuous source of RBC, and the need to monitor the specificity of the low titred reactions with HA inhibition assay []. HI test has also been used most frequently for the detection of CPV []. The antibody can be detected by HI after oral infection on PI day 3 or 4 and with a high titre (>640) by PI day 7 [].
HA test can be performed by employing erythrocyte from various species as swine, sheep, goat, poultry and dogs. Among the erythrocyte of different species, pig RBCs showed the characteristic haemagglutination. Erythrocyte from other species does not give specific haemagglutination []. The HA test can be performed by incubating the plates at various temperature such as 4°C, 25 and 37°C and the best results were found at 4°C followed by at 25°C and least titre at 37°C []. Apart from this, various buffer system have been evaluated for HA test such as normal saline solution (0.9% NSS), phosphate buffer solution with BSA (15 mM PBS + 0.1% BSA) and phosphate buffer saline solution (PBSS) (15 mM PBS + 0.9% NSS) etc. The optimum results were obtained with PBS followed by PBS with BSA and PBSS in a pH range of 4–6 but the results of all three systems were comparable [].

Electron Microscopy

During acute illness, parvoviral virions are readily demonstrated in faeces by negative staining and use of electron microscopy []. Specific identification of CPV may be made using IEM, employing antibodies to CPV or FPV [].

Isolation of CPV

A number of primary cell cultures and cell lines like MDCK (Madin-Darby Canine Kidney) or CRFK (Crandell Feline Kidney) support replication of CPV and virus could be isolated from the cases of CPV induced myocarditis and enteritis. The cell culture adapted virus will enable the biochemical and molecular characterization of the CPV isolates []. A canine cell line (A-72) deserves special mention because it has proved to be particularly useful for CPV isolation from field materials. The A-72 cell line was established from a canine S/C tumour and it has maintained a fibroblastic appearance for more than 135 serial passages. This line proved to be particularly useful for isolation and growth of CPV because CPE were pronounced on initial culture or after one additional passage. The sizes of the plaques produced by CPV under methyl cellulose or agarose overlay media vary from 0.4 to 1.5 mm in diameter. Since the original tissues for culture were derived from an uncharacterized tumour, A-72 cells should not be used for vaccine virus production [].

ELISA

This test is based on the antigen–antibody reactions with specific MAbs fixed on plastic, nitrocellulose membranes, latex or gold particles []. The tests are rapid, relatively cheap and can be performed in any veterinary clinic. Recently an ELISA test, using monoclonal antibodies was reported for the detection of CPV antigen in faeces as little as 1.5 ng of virus []. The double sandwich ELISA is a rapid, simple, sensitive and suitable test over ELISA for routine diagnostic use for detection of CPV antigen in canine faeces. The ELISA test has become the most common test for parvovirus in puppies [].

Polymerase Chain Reaction

Recently the PCR technique has been increasingly used as a tool for the diagnosis of canine parvoviral infection []. It has been widely applied to provide rapid, sensitive and accurate diagnosis of the disease. The PCR has been found to detect fewer particles of CPV-2 than other tests like HA and ELISA (Fig. 2). The PCR can now be used to differentiate the different mutants of CPV-2 using the primers specific for particular mutants []. To increase the sensitivity and specificity of the reaction, the nested PCR has been employed []. The conventional PCR could detect 10 fg of viral replicative form (RF) DNA on agarose gel electrophoresis, whereas as little as 100 ag of the RF DNA was detected by the nested PCR, which was shown to be 100 times more sensitive than the single PCR []. The number of the genome copy in positive samples was estimated about 109–1011/g of faeces by the conventional PCR and 1011–1013/g of faeces by the nested PCR. Thus, the nested PCR seems to be a sensitive, specific and practical method for the detection of CPV in faecal samples [].
Fig. 2
Amplification of part of the VP2 gene of the CPV-2 variants by PCR employing primers pCPV-2 (F) 5′-GAA GAG TGG TTG TAA ATA ATA-3′ (21 mer) and pCPV-2 (R) 5′-CCT ATA TCA CCA AAG TTA GTA G-3′ (22 mer) []. M Marker, 1–6 ...
A touch-down protocol was used which enabled the specific amplification of virion DNA from faeces after a fast and simple boiling pretreatment. The sensitivity of PCR was as high as 10 infectious particles per reaction which corresponds, to a titer of about 10 infectious particles per gram of unprocessed feces. This renders the PCR about 10 to 100-fold more sensitive than electron microscopy [].
The PCR followed by RFLP and sequencing have been used for typing the CPV strains []. On amplifying VP1/VP2 gene (~2.2 kb) and its RE digestion with HpaI and RsaI, it can differentiate between original CPV-2 type and CPV-2a/2b type. Also, RE digestion of amplicon employing AluI can differentiate between CPV-2a and CPV-2b type []. The typing of field samples using PCR followed by RsaI based RFLP showed that the vaccine strain used in India are CPV-2 type while field isolates are either of CPV-2a/2b type []. The results are in accordance with the other workers who found the same difference between field and vaccine strain of CPV employing PCR based differentiation []. CPV-2c variant can be identified by MboII digestion of PCR products of CPV-2b positive samples [].

Real Time PCR

Real time PCR (RT-PCR) employing the TaqMan assay has been used for the detection of CPV-2 DNA in the sample []. The minor groove binder (MGB) probe technology was applied to obtain rapid and unambiguous identification of the viral type []. MGB probes are short TaqMan probes conjugated with molecules that form hyper-stabilized duplexes with complementary DNA, allowing reduction in length of the probe and an increase in specificity []. MGB probes are, therefore, an attractive tool for revealing single nucleotide polymorphisms in the capsid protein gene between CPV types 2a and 2b and CPV types 2b and 2c. Recently, SYBR Green based real time PCR has been developed for detection and quantitation of CPV-2 variants in faecal samples of dogs employing primer set pCPV-2RT (forward 5′-CAT TGG GCT TAC CAC CAT TT-3′ and reverse 5′-CCA ACC TCA GCT GGT CTC AT-3′) based on the sequences of VP2 gene and produce a PCR product 160 bp []. The advantage of the real time PCR is that there is no need to analyse the PCR product by agarose gel electrophoresis. Everything will be graphically shown on the monitor of the computer. Another advantage is that amount of the DNA present in the sample can be quantitated [].

Detection of CPV in Fecal Samples Using LAMP

The Loop Mediated Isothermal Amplification of DNA (LAMP) method was applied for the detection of CPV genomic DNA. A set of four primers, two outer and two inner, were designed from CPV genomic DNA targeting the VP2 gene. The optimal reaction time and temperature for LAMP were determined to be 60 min and 63.8°C respectively. The relative sensitivity of LAMP was 100% and the relative specificity was 76.9%. The detection limit of the LAMP method was 10−1 median tissue culture infective doses (TCID50)/ml [].

Nucleic Acid Hybridization/Dot Blot

In this process the DNA is extracted from the stool samples or cell culture supernatant inoculated with the sample or stool sample suspected for canine parvovirus and charged on the nitrocellulose paper or nylon membrane. The DNA is then subjected to hybridization with CPV-specific probe either radio-labelled or biotin labeled. In the positive case there will be development of band in the X-ray film after autoradiography in case of radio-labelled probe or colour in the nitrocellulose paper in case of non-radio-labelled probe [].

Detection of Canine Parvovirus by In situ Hybridization

This technique was developed to detect viral replication in tissue sections obtained from CPV-infected animals. In this method identification of CPV-specific nucleic acid was done. A CPV-specific DNA probe was produced by PCR amplification of a genome segment encoding capsid proteins VP-1 and VP-2 and was used for knowing the distribution of CPV specific nucleic acid in tissue specimens obtained from infected dogs [].

Nucleic Acid Sequencing

The PCR product as it is or cloned in the suitable cloning vector can be sequenced using the suitable primer with the help of automated DNA sequencer for typing of CPV strains. The sequence is analysed using the appropriate software. This is an important technique to know with certainty the particular variant of the CPV present in the field sample. Both the nucleotide and amino acid sequence data can also be used to know the percent homology and for phylogenetic analysis of CPV-2 isolates from different geographical regions []. Based on sequence analysis CPV-2a and CPV-2b type could be differentiated and none of the isolates were belonging to original CPV-2 type []. In a further study, field isolate as well as vaccine strain of CPV were sequenced and it was found that vaccine strains are of CPV-2 type and field isolate of CPV-2b type [] (Fig. 3). CPV-2c variants have been reported from various countries based on the nucleotide sequence analysis [].
Fig. 3
Phylogenetic analysis based on nucleotide sequence of VP1/VP2 gene of two Indian isolates [CPV-Bhopal (BHO) and CPV-IVRI] and two vaccine strain [Nobivac (NOBI) and Parvovirus vaccine (PVV)] and their comparison with several published nucleotide sequences ...

Immunization

The biggest problem in protecting a puppy against canine parvovirus infection ironically stems from the natural mechanism of protection that has evolved. Puppies obtain their immunity from their mother’s first milk, the colostrum, on the first day of life. There is a strong correlation between HI or serum neutralizing antibody titers and resistance to infection with CPV. The HI test has been useful to measure antibodies which correlated well with immunity. The HI titre 1:80 or more is considered protective but HI titre of 1:40 is not protective but interferes with active immunization against CPV-2 in dogs. The highest rate of infection is reported in pups older than 6 weeks of age. As with other infectious diseases of dogs, puppies from immune bitches are protected for the first week of life by maternal antibodies which are acquired via the colostrums. Successful immunization with most vaccines can be accomplished with a high degree of confidence only in seronegative pups, or in pups with very low antibody titers. Maternal antibodies are acquired during the initial 2–3 days of life and then decline, with an average half life of about 9–10 days. There is a critical period where maternal antibodies are no longer present in sufficient quantity to confer protection. But 90% of the pups from vaccinated populations respond to vaccines at 12 weeks of age [].
Vaccination of dogs is generally performed using multivalent vaccines, which contain CDV, CPV, leptospira bacterin and inactivated rabies virus. Monovalent CPV-2 vaccines are also available, some of them containing very high titer virus (107 TCID50) and widely recommended for initial vaccination of pups. About 60% of all puppies seroconverted after a single vaccination either at 6 weeks of age with a CPV monovalent vaccine or at 8 weeks of age with a multivalent vaccine. At 12 weeks of age another shot is given when all pups had received 2–3 inoculation at this age but nearly 10% pups still had not been sero-converted. The principal reason for the non-responders was the persistence of interfering levels of maternal antibodies. None of the vaccines tested were capable of breaking through a maternal antibody titer of 1:160 or higher, regardless whether the vaccines were high tittered or not []. If it is necessary to develop an individual vaccination schedule, determination of the antibody titer of one or two pups in the litter could be determined at 5 or 6 weeks of age, then vaccination of the litter may be calculated on the basis of titer. Vaccination is likely to be successful when the maternal antibody titer has declined to less than 1:10 [].
There have been concerns expressed over the efficacy of canine parvovirus vaccines which are based on the original type 2 strain []. The reports of gastroenteritis subsequent to vaccination are related to infection with CPV field strains shortly before or after the vaccine administration []. It has previously been demonstrated that a type 2 vaccine is able to provide protection against type 2a and 2b field isolates []. The emergence of the 2c variant naturally raises the question of whether the CPV-2 vaccines can provide protection against this new variant also. The research to date also showed that all currently available vaccines based on CPV-2 and CPV-2b protect against all known strains of CPV, including the newer CPV-2c strain []. In India, most of the vaccines marketed are based on the CPV-2 isolated about 30 years ago []. However, CPV-2a/2b/2c has recently replaced the CPV-2 incidence in dogs in most of the parts of the world including India. There are reports of gastroenteritis in vaccinated dogs and this may be due to CPV-2 is not capable enough to provide full protection against the new strains []. It is better to use homologous vaccines that use CPV-2a or CPV-2b mutants depending on the prevalence of disease in different places to control the disease.

Killed and Modified CPV Vaccine

First, a killed CPV vaccine and more recently live and recombinant vaccine have been developed in the search of a product of improved potency. However, no vaccine has proved to be of high efficacy in the face of maternally derived antibodies (MDA), hence a pup’s primary vaccination cannot be completed before 16 weeks []. In CPV infection live virus vaccines offer a longer duration of immunity than killed vaccines as in other diseases []. None of the currently available vaccines circumvent maternally derived immunity as effectively as does virulent CPV although MLV-CPV vaccines can overcome a higher concentration of maternally derived antibodies than vaccine containing inactivated virus []. MLV vaccine using highly attenuated CPV are more susceptible to maternal antibody induced suppression of active immunization than less attenuated strains. Another way of overcoming the interference of maternal antibodies with CPV vaccine is by using MLV-CPV of high antigenic mass [].

Recombinant Vaccine

Recombinant vaccine containing the baculovirus expressed VP2 protein was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 also shows the capability to self assembles, forming virus like particles similar in size and appearance to CPV virions. The VP2 protein at the rate of 10 μg was able to elicit good protective response as measured by ELISA and shown to be better than commercially available inactivated CPV vaccine in terms of immune response. The expressed VP2 was used along with the Quil A (50 μg/animal), alumina or both adjuvants on 0 and 28 days to improve the immunogenicity of the vaccine at different doses (10, 25, 50 and 100 μg). All the vaccinated dogs maintained the protective antibody response up to 6 days observation period and withstood challenge virus infection 42 days after the booster doses [].

DNA Vaccine

The prokaryotic vector harboring the genes coding for the structural proteins of the canine parvovirus have shown the encouraging results. The dogs immunized with the DNA vaccines withstood the challenge with virulent canine parvovirus. However, the DNA vaccines still is in the experimental stage and not yet licensed to be used in the field condition [].

Peptide Vaccine

The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine. Several peptides based on this N-terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. Within the N-terminal 23 residues of VP2, two sub sites able to induce neutralizing antibodies. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N-termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N-terminus than through the C-terminus to keyhole limpet hemocyanin. This means that the presence of amino acid residues 2–21 (and probably 3–17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine [].

Therapy

The restoration of the electrolyte and fluid balance is the most important goal of therapy []. The affected dog should be put under broad spectrum antibiotic umbrella (ampicillin, chloramphenicol, erythromycin, gentamycin, etc.) Norfloxacin and nalidixic acid have been proved to be effective against canine haemorrhagic gastroenteritis []. Symptomatic treatment with steroid, broad spectrum antibiotic, fluid and electrolyte may save the life of the animal. As soon as the problem is recognized, fluid therapy should be started. Supplementation of these fluids with bicarbonate may be recommended. Metabolic acidosis develops if the diarrhoea is severe and potassium supplementation in the form of KCl may be necessary to maintain electrolyte balance. All oral intakes must be withheld in case of severe vomiting and should be given parenterally []. During the early phase of the disease, the application of hyperimmune serum may help to reduce the virus load and render the infection less dramatic. Such treatment has been shown to reduce the mortality and shorten the length of the disease however hyperimmune serum is difficult to obtain. In case of vomiting, chlorpromazine or metaclopromide (Reglan), out of which Reglan can be given at 0.5 mg/kg body weight parenterally at 8 h interval. To correct the gastric problem cimetidine, ranitidine, famotidine and to check diarrhoea, loparamide or bismuth subnitrate or other astringent preparations may be given []. A dog with persistent vomiting should not be given any food until the diarrhoea and vomiting subsides.

Prevention and Control

As the canine parvovirus is not enveloped, it is especially hardy in the environment. It is able to overcome winter freezing temperatures in the ground outdoors and many household disinfectants are not capable of killing it indoors. Infected dogs shed virus in their stool in gigantic amounts during the 2 weeks following exposure. A typical/average infectious dose for an unvaccinated dog is 1000 viral particles. An infected dog sheds 35 million viral particles (35,000 times the typical infectious dose) per ounce of stool []. Indoor decontamination: Indoors, virus loses its infectivity within 1 month; therefore, it should be safe to introduce a new puppy indoors 1 month after the active infection has ended. Outdoor decontamination: freezing is completely protective to the virus. If the outdoor is contaminated and is frozen, one must wait for it to thaw out before safely introducing a new puppy. Shaded areas should be considered contaminated for 7 months. Areas with good sunlight exposure should be considered contaminated for 5 months. Although most disinfectants cannot kill it, chlorine bleach is quite effective in the ratio of 1 part bleach and 30 parts water. There is no way to completely disinfect contaminated dirt and grass, although sunlight and drying has some effect []. Mechanical decontamination through irrigation may also be helpful, but the area must be allowed to dry thoroughly between applications. Potassium peroxymonosulfate has relatively good activity in the face of organic matter, and can be sprayed on contaminated areas using a pesticide sprayer or other applicator [].

Conclusion

In summary, parvovirus is a very common problem of canines and is a huge killer of puppies. Due to its ability to be transmitted through hands, clothes, and most likely rodents and insects, it is virtually impossible to have a kennel that will not eventually be exposed to the disease. Modified live vaccines are safe and effective, but despite the best vaccination protocol, all puppies will have a window of susceptibility of at least several days where they will be at risk. In addition, the newer CPV-2c strain presents new challenges as the current vaccines may not be as effective in providing protection against it. Again, commercially available FPV or CPV-2 based vaccines might also protect animals from the new virus infection. However, if the new virus gains wider host ranges, deadly outbreaks could be observed like first emergence of CPV-2 in dogs. In that case, recent isolates need to be investigated to anticipate and assess the risk caused by newly emerging viruses. Further the homologous vaccine based on current or newer variant should be made ready to tackle the disease. Also, zoo sanitary measures should be employed to prevent the disease in wild animals.
Although potent and efficacious live attenuated and inactivated vaccines are available in India but large numbers of cases are diagnosed by HA, HI, ELISA or PCR, mostly from the unvaccinated dogs as the stray dogs usually are not vaccinated against the disease and they remain carrier of the virus and source of infection to other susceptible dogs. Extensive studies must be undertaken to know the molecular epidemiology of the canine parvovirus infections in different canine species and the variants of the CPV involved in the outbreak of the disease. The necessary preventive measures must be undertaken to immunize the susceptible dogs including the stray dogs with the potent and efficacious vaccines against the disease to check the spread of the disease. Prompt symptomatic treatment, restoration of fluid and antibiotics to prevent bacterial infection by a veterinarian will increase survivability in infected puppies but vaccination program should be considered the best way to control the disease in dog.

Contributor Information

S. Nandi, moc.oohay@1091idnans.
Manoj Kumar, moc.oohay@1091tevjonam.

References

1. Appel MJG, Cooper BJ, Greisen H, Carmichael LE. Status report: canine viral enteritis. J Am Vet Med Assoc. 1978;173:1516–1518.
2. Appel MJG, Scott FW, Carmichael LE. Isolation and immunization studies of a canine parvo-like virus from dogs with hemorrhagic enteritis. Vet Res. 1979;105:156–159. [PubMed]
3. Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation. J Virol. 2002;76:10524–10529. doi: 10.1128/JVI.76.20.10524-10529.2002. [PMC free article] [PubMed][Cross Ref]
4. Banja BK, Sahoo N, Das PK, Swain P, Panda HK. Comparison of different laboratory tests for diagnosis of parvo and corona viral infections in dogs. Indian Vet J. 2002;79:425–428.
5. Biswas S, Das PJ, Ghosh SK, Pradhan NR. Detection of canine parvovirus (CPV) DNA by polymerase chain reaction and its prevalence in dogs in and around Kolkata, West Bengal. Indian J Anim Sci.2006;76(4):324–325.
6. Black JW, Holscher MA, Powell HS, Byerly CS. Parvoviral enteritis and panleucopenia in dogs. J Med Small Anim Clin. 1979;74:47–50. [PubMed]
7. Buonavoglia CV, Martella A, Pratelli M, Tempesta A, Cavalli D, Bozzo G, Decaro N, Carmichael LE. Evidence for evolution of canine parvovirus type-2 in Italy. J Gen Virol. 2001;82:1555–1560. [PubMed]
8. Burtonboy G, Goignoul F, Delferriere N, Pastoret PP. Canine hemorrhagic enteritis: detection of viral particles by electron microscopy. Arch Virol. 1979;61:1–11. doi: 10.1007/BF01320586. [PubMed][Cross Ref]
9. Carmichael LM, Joubert JC, Pollock RV. Hemagglutination by canine parvovirus: serologic studies and diagnostic application. Am J Vet Res. 1980;40:784–791. [PubMed]
10. Carmichael LE, Schlafer DH, Hashimoto A. Minute virus of canines (MVC, canine parvovirus type-1): pathogenicity for pups, canine parvovirus type): pathogenicity for pups and seroprevalence estimate. J Vet Diagn Invest. 1994;6:165–174. [PubMed]
11. Carpenter JL, Roberts RM, Harpster NK, King NW., Jr Intestinal and cardiopulmonary forms of parvovirus infection in a litter of pups. J Am Vet Med Assoc. 1980;176:1269–1273. [PubMed]
12. Cavalli A, Martella V, Costantina D, Michele C, Anna LB, Pasquale DP, Nicola D, Gabriella E, Buonavoglia C. Evaluation of the antigenic relationships among canine parvovirus type 2 variants. Clin Vaccine Immunol. 2008;15(3):534–539. doi: 10.1128/CVI.00444-07. [PMC free article] [PubMed][Cross Ref]
13. Chang SF, Sgro JY, Parrish CR. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and haemagglutination properties. J Virol.1992;66:6858–6867. [PMC free article] [PubMed]
14. Chinchkar SR, Mohan SB, Hanumantha RN, Rangarajan PN, Thiagarajan D, Srinivasan VA. Analysis of VP2 gene sequences of canine parvovirus isolates in India. Arch Virol. 2006;151:1881–1887. doi: 10.1007/s00705-006-0753-8. [PubMed] [Cross Ref]
15. Cho HS, Song JE, Park YS, Park NY. Diagnosis of the canine parvovirus in faecal samples by in situ hybridization. Int Vet J. 2004;81:855–859.
16. Cooper BJ, Carmichael LE, Appel MJG, Greisen H. Canine viral enteritis. II. Morphological lesions in naturally occurring parvovirus infection. Cornell Vet. 1979;69:134–144. [PubMed]
17. Dahiya SS, Kulkarni DD. Optimization of haemagglutination test for the detection of canine Parvovirus infection. Indian J Comp Microbiol Immunol Infect Dis. 2004;25(2):119–220.
18. de Ybanez RR, Vela C, Cortes E, Simarro I, Casal JI. Identification of types of canine parvovirus circulating in Spain. Vet Rec. 1995;136:174–175. doi: 10.1136/vr.136.7.174. [PubMed] [Cross Ref]
19. Decaro N, Elia G, Campolo M, Desario C, Lucente MS, Bellacicco AL. New approaches for molecular characterization of canine parvovirus type-2 strains. J Vet Med B. 2005;52:316–319. doi: 10.1111/j.1439-0450.2005.00869.x. [PubMed] [Cross Ref]
20. Decaro N, Elia G, Martella V, Campolo M, Desario C, Camero M. First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain. J Vet Med B. 2006;53:468–472. doi: 10.1111/j.1439-0450.2006.00974.x. [PubMed] [Cross Ref]
21. Decaro N, Elia G, Martella V, Campolo M, Desario C, Camero M. Characterization of the canine parvovirus type 2 variants using minor groove binder probe technology. J Virol Methods. 2006;133:92–99. doi: 10.1016/j.jviromet.2005.10.026. [PubMed] [Cross Ref]
22. Decaro N, Desario C, Addie DD, Martella V, Vieira MJ, Elia G, Davis C, Thompson G, Truyen U, Buonavoglia C. The study of molecular epidemiology of canine parvovirus, Europe. Emerg Infect Dis.2007;13:1222–1224. [PMC free article] [PubMed]
23. Decaro N, Elia G, Martella V, Campolo M, Lorusso A, Desario C, Mari V, Camero M, Buonavoglia C. Occurrence of severe gastroenteritis in pups after canine parvovirus vaccine administration: a clinical and laboratory diagnostic dilemma. Vaccine. 2007;25:1161–1166. doi: 10.1016/j.vaccine.2006.10.020. [PubMed][Cross Ref]
24. Deepa PM, Saseendrannath MR. Serological studies on canine parvoviral infection. Indian Vet J.2000;79:643–644.
25. Fletcher KC, Bugster AK, Schmidt RE, Hubbard GB. Parvovirus infection in maned wolves. J Am Vet Med Assoc. 1979;175:897–900. [PubMed]
26. Gamoh K, Senda M, Inoue Y, Itoh O. Efficacy of an inactivated feline panleucopenia virus vaccine against a canine parvovirus isolated from a domestic cat. Vet Rec. 2005;157:285–287. [PubMed]
27. Greenwood NM, Chalmers SK, Baxendale W, Thompson H. Comparison of isolates of canine parvovirus by restriction enzyme analysis and vaccine efficacy against field strains. Vet Rec. 1995;136:63–67. doi: 10.1136/vr.136.3.63. [PubMed] [Cross Ref]
28. Greenwood NM, Chalmer WSK, Baxendale W, Tampson H. Comparison of isolates of canine parvovirus by monoclonal antibody and restriction enzyme analysis. Vet Rec. 1996;138:495–496. doi: 10.1136/vr.138.20.495. [PubMed] [Cross Ref]
29. Gupta PK, Rai A, Rai N, Raut AA, Chauhan RS. Cloning of canine parvovirus VP2 gene and its use as DNA vaccine in dogs. Curr Sci. 2005;88:778–782.
30. Hayes MA, Russell RG, Mueller RW, Lewis RJ. Myocarditis in young dogs associated with a parvovirus-like agent. Can Vet J. 1979;20:126–132. [PMC free article] [PubMed]
31. Hirasawa T, Kaneshige T, Mikazuki K. Sensitive detection of canine parvovirus DNA by the nested polymerase chain reaction. Vet Microbiol. 1994;41:135–145. doi: 10.1016/0378-1135(94)90143-0.[PubMed] [Cross Ref]
32. Hirasawa T, Yono K, Mikazuki K. Detection and genomic analysis of canine parvovirus by the polymerase chain reaction. J Vet Med B. 1996;43:545–554. doi: 10.1111/j.1439-0450.1996.tb00352.x.[PubMed] [Cross Ref]
33. Hong C, Decaro N, Desario C, Tanner P, Pardo MC, Sanchez S, Buonavoglia C, Saliki JT. Occurrence of canine parvovirus type 2c in the United States. J Vet Diagn Invest. 2007;19:535–539. [PubMed]
34. Ho-Seong C, Jong K, Nam-Yong P. Detection of canine parvovirus in fecal samples using loop-mediated isothermal amplification. J Vet Diagn Investig. 2006;18:81–84. [PubMed]
35. Houston DM, Ribble CS, Head LL. Risk factors associated with parvovirus enteritis in dogs. J Am Vet Med Assoc. 1996;208:542–548. [PubMed]
36. Ignacio JC, Langeveld JPM, Elena CS, Schaaper WWM, Kamstrup S, Meloen RH. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J Virol. 1995;69(11):7274–7277. [PMC free article] [PubMed]
37. Ikeda Y, Nakamura K, Miyazawa T, Tohya Y, Takahashi E, Mochizuki M. Feline host range of canine parvovirus: recent emergence of new antigenic types in cats. Emerg Infect Dis. 2002;6:341–346. doi: 10.3201/eid0804.010228. [PMC free article] [PubMed] [Cross Ref]
38. Jacob RM, Weiser MG, Hall RL, Kowalski JJ. Clinic pathogenic features of canine parvoviral enteritis. J Am Vet Med Assoc. 1980;16:809–813.
39. João Vieira M, Silva E, Oliveira J, Luísa Vieira A, Decaro N, Desario C, Muller A, Carvalheira J, Buonavoglia C, Thompson G. Canine parvovirus 2c infection in central Portugal. J Vet Diagn Invest.2008;20(4):488–491. [PubMed]
40. Kapil S, Cooper E, Lame C, Brandy M, Grunt K, Johnson W, Campbell G, Johnson B. Canine parvovirus type 2c and 2b circulating in North American dogs in 2006–2007. J Clin Microbiol.2007;45(12):4044–4047. doi: 10.1128/JCM.01300-07. [PMC free article] [PubMed] [Cross Ref]
41. Kelly WR, Atwell RB. Diffuse subacute myocarditis of possible viral etiology: a cause of sudden death in pups. Aust Vet J. 1979;55:36–37. doi: 10.1111/j.1751-0813.1979.tb09549.x. [PubMed] [Cross Ref]
42. Kramer JM, Meunter PC, Pollock RVH. Canine parvovirus: update. Vet Med Small Anim Clin.1980;175:1541–1555. [PubMed]
43. Kumar P, Garg SK, Babdhopadhyay SK, Singh R, Srivastava S. Haemagglutinating activity of canine parvovirus. Indian J Anim Sci. 2004;73(2):123–125.
44. Kumar A, Dharmadheeran JS, Kumar S, Thakral SS. Strain identification and characterization of VP1 and VP2 gene of canine parvovirus of Indian origin. J Appl Anim Res. 2004;25:57–60.
45. Kumar M, Chidri S, Nandi S. Molecular cloning and restriction endonuclease analysis of canine parvovirus DNA amplified by polymerase chain reaction. Glob Vet. 2010;4(2):125–129.
46. Kumar M, Nandi S, Verma R Development of SYBR Green based Real-Time PCR assay for quantitation of canine parvovirus in faecal samples. In: 7th Annual convention of ISACP on “Novel approaches in companion animal practice” held at Veterinary College, KVAFSU, Hebbal, Bangalore, 21–23; 2010, 146 pp.
47. Lopez JA, Turiso D, Elena C, Concepcion M, Rocto RY, Isabel S, Carmen V, Ignacio CI, Hermanos GN. Recombinant vaccine for canine parvovirus in dogs. J Virol. 1992;66:2748–2753. [PMC free article][PubMed]
48. Martella V, Cavalli A, Pratelli A, Bozzo G, Camero M, Buonavoglia D, Narcisi D, Tempesta M, Buonavoglia C. A canine parvovirus mutant is spreading in Italy. J Clin Microbiol. 2004;42:1333–1336. doi: 10.1128/JCM.42.3.1333-1336.2004. [PMC free article] [PubMed] [Cross Ref]
49. Martella V, Cavalli A, Decaro N, Elia G, Desario C, Campolo M, Bozzo G, Tarsitano E, Buonavoglia C. Immunogenicity of an intranasally administered modified live canine parvovirus type 2b vaccine in pups with maternally derived antibodies. Clin Diagn Lab Immunol. 2005;12:1243–1245. [PMC free article] [PubMed]
50. McCandlish IAP, Thompson H, Fisher EW, Cornwell HJC, Macartney J, Walton IA. Canine parvovirus infection. In Pract. 1981;3:5–14. [PubMed]
51. Mochizuki M, Horiuchi M, Hiragi H, San Gabriel MC, Yasuda N, Uno T. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleucopenia. J Clin Microbiol. 1996;34:2101–2105.[PMC free article] [PubMed]
52. Mochizuki M, Hashimoto M, Hajima T, Takiguchi M, Hashimoto A, Yumi U, Roerink F, Ohshima T, Parrish CR, Carmichael LE. Virologic and serologic identification of minute virus of canines (canine parvovirus type 1) from dogs in Japan. J Clin Microbiol. 2002;40(11):3993–3998. doi: 10.1128/JCM.40.11.3993-3998.2002. [PMC free article] [PubMed] [Cross Ref]
53. Mohan R, Nauriyal DC, Singh KB. Detection of canine parvovirus in feces, using a parvovirus ELISA test kit. Indian Vet J. 1993;70:301–303.
54. Murphy FA, Gibbs EPJ, Horzinek M, Studdert MJ. Veterinary Virology. 3. New York: Academic Press; 1999. pp. 169–170.
55. Nakamura M, Tohya Y, Miyazawa T, Mochizuki M, Phung HT, Nguyen NH, Huynh LM, Nguyen LT, Nguyen PN, Nguyen PV, Nguyen NP, Akashi H. A novel antigenic variant of canine Parvo virus from a Vietnamese dog. Arch Virol. 2004;149:2261–2269. doi: 10.1007/s00705-004-0367-y. [PubMed] [Cross Ref]
56. Nandi S, Kumar M, Anbazhagan R, Chidri S, Chauhan RS. A sensitive method to detect canine parvoviral DNA in the stool samples by polymerase chain reaction. Indian J Comp Microbiol Immunol Infect Dis. 2007;27:56–57.
57. Nandi S, Anbazhagan R, Kumar M, Chauhan RS. Molecular characterization of canine parvovirus strains in vaccines by polymerase chain reaction and restriction endonuclease analysis. Indian J Virol.2009;20(1):12–15.
58. Nandi S, Chidri S, Kumar M. Molecular characterization and phylogenetic analysis of a canine parvovirus isolate in India. Vet Med. 2009;54(10):483–490.
59. Nandi S, Chidri S, Kumar M, Chauhan RS. Occurrence of canine parvovirus type 2c in the dogs with haemorrhagic enteritis in India. Res Vet Sci. 2010;88:169–171. doi: 10.1016/j.rvsc.2009.05.018. [PubMed][Cross Ref]
60. Nandi S, Anbuzhagan R, Kumar M. Strain differentiation and characterization of canine parvovirus by PCR and RE mapping. Indian J Biotechnol. 2010;9:38–42.
61. Nandi S, Ambazhagan R, Kumar M. Molecular characterization and nucleotide sequence analysis of canine parvovirus strains in vaccine in India. Vet Ital. 2010;46(1):69–81. [PubMed]
62. Narayanan S, Kumar A, Chug PK, Bhawn S, Yadav RK, Sharma ML. Strain characterization of Indian isolates of canine parvovirus by PCR-RFLP. J Remount Vet Corps. 2001;40:67–74.
63. Osterhaus ADME, Steenis G, Kreek P. Isolation of a virus closely related to feline panleucopenia virus from dogs with diarrhoea. Zent Vet Med. 1980;27:11–21. [PubMed]
64. Panda D, Patra RC, Nandi S, Swarup D. Antigenic characterization of canine parvovirus by polymerase chain reaction. Indian J Anim Sci. 2009;79(9):876–879.
65. Panneer D, Mukhopadhyay HK, Antony PX, Pillai RM. Comparison of diagnostic tests and antigenic typing of Canine parvovirus. Indian J Virol. 2008;19(2):150–154.
66. Parker JS, Murphy WJ, Wang D, O’Brien SJ, Parrish CR. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol. 2001;75:3896–3902. doi: 10.1128/JVI.75.8.3896-3902.2001. [PMC free article] [PubMed] [Cross Ref]
67. Parrish CR. Pathogenesis of feline panleucopenia virus and canine parvovirus. Baillieres Clin Haematol.1995;8:57–71. doi: 10.1016/S0950-3536(05)80232-X. [PubMed] [Cross Ref]
68. Parrish CR, O’Connell PH, Evermann JF, Carrmichael LE. Natural variation of canine parvovirus. Science. 1985;230:1046–1048. doi: 10.1126/science.4059921. [PubMed] [Cross Ref]
69. Parrish CR, Aquadro CF, Carmichael LE. Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink and racoon parvoviruses. Virology. 1988;166:293–307. doi: 10.1016/0042-6822(88)90500-4. [PubMed] [Cross Ref]
70. Parrish CR, Aquadro CF, Strassheim ML, Evermann JF, Sgro JY, Mohammed HO. Rapid antigenic type replacement and DNA sequence evolution of canine parvovirus. J Virol. 1991;65:6544–6552.[PMC free article] [PubMed]
71. Pereira CA, Monezi TA, Mehnert DU, D’Angelo M, Durigon EL. Molecular characterization of canine parvovirus in Brazil by PCR. Vet Microbiol. 2000;75:127–133. doi: 10.1016/S0378-1135(00)00214-5.[PubMed] [Cross Ref]
72. Perez R, Francia L, Romero V, Maya L, Lopez I, Hernandez M. First detection of canine parvovirus type 2c in South America. Vet Microbiol. 2007;124:147–152. doi: 10.1016/j.vetmic.2007.04.028. [PubMed][Cross Ref]
73. Phukan A, Deka D, Boro PK. Occurrence of canine parvovirus infection in and around Guwahati. Indian J Anim Sci. 2004;74(4):930–931.
74. Pratelli AA, Buonavoglia D, Tempesta M, Guarda F, Carmichael LE, Buonavoglia C. Fatal canine parvovirus type-1 infection in pups from Italy. J Vet Diagn Invest. 1999;11:365–367. [PubMed]
75. Pratelli AA, Cavalli G, Normanno MG, Palma GD, Pastorelli AA, Buonavoglia C, Martella V. Immunization of pups with maternally derived antibodies to canine parvovirus (CPV) using a modified-live variant (CPV-2b) J Vet Med. 2000;47:273–276. doi: 10.1046/j.1439-0450.2000.00340.x. [PubMed][Cross Ref]
76. Ramadass P, Khadher TGA. Diagnosis of canine parvovirus infection by agar gel precipitation test and fluorescent antibody techniques. Cherion. 1982;11:323–326.
77. Robinson WF, Huxtable CR, Pass DA. Canine parvoviral myocarditis: a morphological description of the natural disease. Vet Pathol. 1980;17:282–293. doi: 10.1177/030098588001700508. [PubMed] [Cross Ref]
78. Sanjukta R, Maheshkumar L, Nagappa B, Joken B, Karuna I, Mandakini (2008) Molecular epidemiological study of canine parvovirus in some parts of India. In: International conference on emerging infectious diseases of animals and biotechnological applications, held at TANUVAS, Chennai, 28–29 July 2008, 65 pp.
79. Savi J, Minakshi P, Prasad G. Genotyping of field strain of canine parvovirus in Haryana using PCR and RFPL. Indian J Anim Sci. 2009;79(10):971–973.
80. Schultz R. Duration of immunity for canine and feline vaccines: a review. Vet Microbiol.2006;117(1):75–79. doi: 10.1016/j.vetmic.2006.04.013. [PubMed] [Cross Ref]
81. Schultz RL. Current Canine Parvovirus Type 2 (CPV-2) vaccines provide excellent immunity to all genotypes of CPV-2 (e.g. CPV-2a, 2b, and 2c) Vet Ther. 2008;9(2):94–101.
82. Schunck B, Kraft W, Truyen U. A simple touch-down polymerase chain reaction for the detection of canine parvovirus and feline panleukopenia virus in feces. J Virol Methods. 1995;55:427–433. doi: 10.1016/0166-0934(95)00069-3. [PubMed] [Cross Ref]
83. Scott FW. Virucidal disinfectants and feline viruses. Am J Vet Res. 1980;41:410–414. [PubMed]
84. Shackelton LA, Parrish CR, Truyen U, Holmes EC. High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci USA. 2005;102:379–384. doi: 10.1073/pnas.0406765102. [PMC free article] [PubMed] [Cross Ref]
85. Spibey N, Greenwood NM, Sutton D, Chalmers WS, Tarpey I. Canine parvovirus type 2 vaccine protects against virulent challenge with type 2c virus. Vet Microbiol. 2008;128(1–2):48–55. doi: 10.1016/j.vetmic.2007.09.015. [PubMed] [Cross Ref]
86. Stann SE, DiGiacomo RF, Giddens WE, Evermann JF. Clinical and pathological features of parvoviral diarrhoea in dogs. J Am Vet Med Assoc. 1984;185:651–654. [PubMed]
87. Steinel A, Venter EH, Van Vuuren M, Truyen U. Antigenic and genetic analysis of canine parvovirus in Southern Africa. Onderstepoort J Vet Res. 1998;65:239–242. [PubMed]
88. Steinel L, Munson M, Van Vuuren C, Truyen U. Genetic characterization of feline parvovirus sequences from various carnivores. J Gen Virol. 2000;81:345–350. [PubMed]
89. Steinel A, Parrish CR, Bloom ME, Truyen U. Parvovirus infections in wild carnivores. J Wildl Dis.2001;37(3):594–607. [PubMed]
90. Tratschin JD, McMaster GK, Kronauer G, Siegl G. Canine parvovirus relationship to wild-type and vaccine strains of feline panleucopenia virus and mink enteritis virus. J Gen Virol. 1982;61:33–41. doi: 10.1099/0022-1317-61-1-33. [PubMed] [Cross Ref]
91. Truyen UA. Evolution of canine parvovirus—a need for new vaccines. Vet Microbiol. 2006;117:9–13. doi: 10.1016/j.vetmic.2006.04.003. [PubMed] [Cross Ref]
92. Truyen U, Parrish CR. Canine and feline host ranges of canine parvovirus and feline panleucopenia virus: distinct host cell tropisms of each virus in vitro and in vivoJ Virol. 1992;66:5399–5408.[PMC free article] [PubMed]
93. Truyen UA, Gruneberg SF, Chang B, Obermaier P, Parrish CR. Evolution of the feline-subgroup of parvoviruses and the control of canine host range in vivo. J Virol. 1995;69:4702–4710. [PMC free article][PubMed]
94. Truyen U, Evermann JF, Vieler E, Parrish CR. Evolution of canine parvovirus involved loss and gain of feline host range. Virology. 1996;215:186–189. doi: 10.1006/viro.1996.0021. [PubMed] [Cross Ref]
95. Truyen U, Steinel A, Bruckner L, Lutz H, Mostl K. Distribution of antigen types of canine parvovirus in Switzerland, Austria and Germany. Schweiz Arch Tierheilkd. 2000;142:115–119. [PubMed]
96. Waner T, Naveh A, Wudovsky I, Carmichael LE. Assessment of maternal antibody decay and response to canine parvovirus vaccination using a clinic-based enzyme linked immuno sorbent assay. J Vet Diagn Invest. 1996;8:427–432. [PubMed]
97. Waner T, Mazar S, Nachmias E, Keren-Kornblatt E, Harrus S. Evaluation of a dot ELISA kit for measuring immunoglobulin M antibodies to canine parvovirus and distemper virus. Vet Rec. 2003;152:588–591. doi: 10.1136/vr.152.19.588. [PubMed] [Cross Ref]
98. Whan-Gook N, Jung-Hyang S, Alan RD, Soon-Bok K. Detection of canine parvovirus in naturally infected dogs with enteritis and myocarditis by in situ hybridization. J Vet Diagn Investig. 1997;9:255–260.[PubMed]
99. Woods CB, Pollock RVH, Carmichael LE. Canine parvoviral enteritis. J Am Anim Hosp Assoc.1980;16:171–179.