martes, 20 de marzo de 2012

CULTIVO Y CARACTERIZACIÓN DE VIRUS. D.J. Wise y G.R. Carter 2005


Cultivo y caracterización de virus

D.J. Wise1 and G.R. Carter2
1Department of Biology, Concord University, Athens, West Virginia, USA.2Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA.
Traducido por: A. T. Pérez Méndez, Biotecnología Veterinaria de Puebla, S.A de C.V., Tehuacán, Puebla, Mexico. (21-Apr-2005).
Indice
Se han desarrollado métodos para el almacenamiento, visualización, cuantificación (directa e indirecta) y propagación de virus. También hay métodos para el diagnóstico de laboratorio de enfermedades virales, muchos de los cuales son métodos serológicos, basados en la detección de la respuesta del hospedero a la infección. Estos métodos diagnósticos serán discutidos en el capítulo 7.
A lo largo del tiempo, fue posible observar que el contagio de ciertas enfermedades era capaz de pasar a través de filtros que las bacterias no podían pasar. Los filtrados obtenidos no eran capaces de crecer en medios de cultivos para bacterias, y eventualmente se demostró experimentalmente que eran infectivos y que contenían virus. A excepción de los virus de viruela, los virus no pueden ser observados con microscopio óptico. Eventualmente los virus fueron observados con microscopio electrónico. Algunos de los métodos importantes usados en los estudios básicos de virus se describen a continuación.
Tal como se mencionó en el capítulo anterior, los virus animales presentan una considerable diversidad en sus características físicas. La característica que más refleja las propiedades del virión es la presencia o ausencia de la envoltura viral. Como se señala en la tabla 2.1, los virus no envueltos son, en general, sensibles a la radiación ultravioleta, relativamente termoestables y susceptibles al daño por los cristales de hielo.
Debido principalmente a la presencia de la envoltura de membrana, los virus envueltos se inactivan con solventes lipídicos (como cloroformo y éter) y detergentes (como el desoxicolato), son sensibles a la radiación gama y ultravioleta, relativamente termolábiles y el daño que les produce la formación de cristales de hielo es más extenso que el que se produce en los virus no envueltos o desnudos.
Tabla 2.1. Principales propiedades fisicoquímicas y biológicas de viriones envueltos y desnudos
Características
Virus desnudos
Virus envueltos
Radiación ultravioleta
Sensible
Sensible
Radiación gama
Sensible
Sensible
Termoestabilidad
Termoestable
Termolábil
Susceptibilidad a daño por cristales de hielo
Si
Extenso
Inactivación por solventes lipídicos y detergentes
No
Si

Métodos de propagación viral

Para aislar, caracterizar e identificar virus, así como para producir vacunas virales, se necesita una cantidad considerable de partículas virales. Esto se logra a través de diferentes métodos de propagación, los cuales se enlistan a continuación:
Hospederos animales
En el pasado, la propagación de virus en organismos hospederos susceptibles no infectados era la única manera de obtener grandes cantidades de virus. Actualmente el uso de animales experimentales como hospederos para propagación viral está limitado por razones éticas. La propagación viral en animales es más útil para aquellos virus que no crecen fácilmente en cultivos celulares. Por ejemplo: cepas vacunales del virus de la enteritis hemorrágica de pavo pueden ser propagadas tanto en aves vivas como en cultivos celulares. Sin embargo los productos propagados en bazo (de aves vivas) parecen ser más usados que los propagados en cultivo.
Para fines diagnósticos la inoculación de animales es un medio para detectar virus en muestras clínicas, como el virus de la rabia en ratones lactantes.
Huevos embrionados
Antes del desarrollo de las técnicas de cultivo de células y de tejidos, el uso de huevo embrionado para propagación viral fue una de las primeras alternativas al uso de organismos animales hospederos. El huevo embrionado es aún el método preferido para la propagación de virus de influenza tipo A y para muchos otros virus aviares. El huevo embrionado también es útil en la diferenciación de algunos virus que producen lesiones similares, como los virus de la viruela de la vaca y los virus de la pseudo viruela de la vaca. Aunque el virus de la enfermedad de la lengua azul (BTV) es un virus de mamíferos, se replica bien en huevo embrionado, por lo que este sistema se usa para propagación viral con fines diagnósticos y de investigación.
Cuando se usa huevo embrionado, uno debe considerar la posible presencia de anticuerpos maternos (IgY) en el saco vitelino del huevo. Por lo tanto, frecuentemente es preferible obtener huevo embrionado de parvadas libres de patógenos específicos (SPF). El dar pases en embrión de pollos es útil en la atenuación de ciertos virus para vacunas de virus vivo modificado.
Cultivo de células/tejidos
El cultivo de tejidos se refiere al crecimiento y mantenimiento de células de tejidos vivos in vitro. Hay básicamente dos tipos: cultivo de explantes y cultivo de células. Los explantes son pequeños fragmentos de tejidos del hospedero que se mantienen en cultivo, mientras que el cultivo de células se obtiene mediante de la disgregación de diferentes tejidos del hospedero en células individuales. La mayoría de los sistemas usados en virología son en realidad cultivos celulares y no cultivos de tejidos, aunque ambos términos se usan de manera indistinta. Los cultivos celulares se subdividen a su vez en cultivos primarios, cultivos semi-continuos y cultivos continuos.
Cultivo celular normal.
Figura 2-1. Cultivo celular normal. Cortesía de A. Wayne Roberts. Para ver oprima la figura
Cultivo de explantes
Estos son cultivos de pequeños fragmentos de tejidos específicos, tomados directamente del hospedero animal. Los cultivos de explantes son útiles para el aislamiento viral y se requieren para el aislamiento de algunos coronavirus. La demostración de latencia de algunos alfa herpesvirus humanos y animales puede requerir explantes de ganglio nervioso sensitivo (por ejemplo, trigémino).
Cultivos celulares primarios
Estos se derivan de tejidos frescos que han sido digeridos enzimáticamente con tripsina u otras proteasas, para liberar células individuales. Como resultado, con frecuencia los cultivos primarios están compuestos de muchos tipos celulares diferentes. En condiciones in vitro las células de los cultivos primarios raramente pueden dividirse, o se dividen a una velocidad muy baja. Es por esto que tienen un tiempo de vida limitado, conocido como límite de Hayflick. A pesar del tiempo de vida limitado de los cultivos primarios, son ideales para el aislamiento de algunos virus. Los cultivos primarios raramente sobreviven más allá del vigésimo pase in vitro.
Cultivos semi-continuos
Son también conocidos como líneas celulares diploides, debido a que contienen el cromosoma diploide normal característico de la especie de la que ellos se derivan. Los cultivos semi-continuos son cultivos primarios que tienen algunas células que pueden ser cuidadas para sobrevivir más allá del límite de Hayflick. Los cultivos semi-continuos tienden a morir entre el 30° y el 50° pase in vitro. A pesar de esta limitante, los cultivos semi-continuos son útiles en la propagación de una gran variedad de virus. Los cultivos semi-continuos son por lo general de fibroblastos.
Cultivos celulares continuos
Se les conoce también como líneas celulares heterodiploides, debido a que poseen un número anormal de cromosomas. Estos cultivos se derivan de tejidos normales o neoplásicos y se caracterizan por su habilidad para ser propagados in vitro indefinidamente. De manera general, las líneas celulares continuas no son tan sensibles como las otras para propagación viral. Sin embargo, facilitan la propagación a gran escala de algunos virus para vacunas e investigación. Muchas líneas continuas están disponibles de proveedores como la Colección Americana de Cultivos Tipo (ATCC por sus siglas en inglés).
La mayoría de los laboratorios de virología almacenan en congelación alícuotas iniciales de sus cultivos continuos, debido a que las líneas celulares que están continuamente en cultivo pueden sufrir cambios en sus características celulares. Las causas de estos cambios pueden ser infección por Micoplasma spp., o virus contaminantes (por ejemplo, circovirus porcino y virus de la diarrea viral bovina).

Concentración y purificación de virus

Una vez que un virus ha sido propagado adecuadamente, necesita ser recuperado de las células hospederas y los restos de éstas, y luego ser purificado. Esto se logra por varios procesos que involucran centrifugación diferencial (a diferentes velocidades), diálisis, precipitación, cromatografía y gradientes de densidad. El paso inicial de este proceso es la centrifugación diferencial; se usa una velocidad baja (~2,000 x g) para quitar restos celulares y a para concentrar se usa a continuación, en el caso de volúmenes pequeños, una velocidad alta de centrifugación (40K a 80K x g) y en el caso de volúmenes mayores, se usa diálisis y precipitación o precipitación con metanol frío (-70°C) o con polietilenglicol. La purificación se lleva a cabo mediante cromatografía o centrifugación usando gradientes de densidad. Los virus envueltos pueden ser purificados aprovechando su velocidad de sedimentación en gradientes de sacarosa. Los virus desnudos pueden ser purificados por centrifugación a través de gradientes de cloruro de cesio.

Infectividad y almacenamiento

Infectividad
La infectividad es la habilidad de la partícula viral para infectar una célula hospedera. La temperatura en el exterior de la célula hospedera afecta fácilmente la capacidad del virus para conservar su infectividad, particularmente en el caso de los virus envueltos. Debido a que los virus no tienen actividad metabólica propia, la infectividad es el mejor medio para evaluar la integridad de la partícula viral después de que se ha expuesto a cierta temperatura. Las siguientes son consideraciones importantes al respecto:
  • A 60°C, la infectividad del virus disminuirá rápidamente, en segundos.
  • A 37°C, la infectividad disminuirá dramáticamente, en minutos.
  • A 20°C, la infectividad disminuirá, en cuestión de horas.
  • La infectividad en las temperaturas antes mencionadas influyen en la transmisión del virus por contacto directo (a 37°C) y por fomites (a 20°C).
  • A 4°C, la infectividad en tejidos se pierde en cuestión de días. Los clínicos deben tener esto en cuenta al considerar los especímenes clínicos.
Con frecuencia se usan temperaturas abajo del punto de congelación para almacenamientos por periodos largos. Lo importante a considerar es mantener al mínimo la formación de cristales de hielo.
Debe mantenerse en mente el hecho de que los virus presentan gran diversidad en su resistencia y labilidad Algunos son capaces de sobrevivir por horas, días, o incluso meses bajo condiciones ambientales, mientras que otros se inactivan en pocos minutos bajo las mismas condiciones.
Los tres métodos principales para almacenar virus son:
  • Congelación a -70°C, con o sin criopreservante.
  • Para almacenamiento por largos periodos: congelamiento en nitrógeno líquido (-196°C).
  • Liofilización con almacenamiento en congelación o a temperatura ambiente.

Visualización de los virus

Los dos métodos principales usados para visualizar la estructura / morfología de los virus son: la microscopía electrónica y la microscopía de fuerza atómica. Otros tipos de microscopía se usan para observar cambios inducidos por la replicación viral en las células infectadas. Sin un medio para visualizar los virus es difícil obtener información acerca de la estructura o las interacciones célula-virus. Más aún, el visualizar las partículas virales le permite a uno estimar directamente el número de partículas (virales) presentes en una suspensión. Hay otros métodos que le permiten a uno estimar el número de virus indirectamente. En cualquier caso, la cuantificación directa o indirecta es siempre un estimado. Este estimado numérico es importante al preparar vacunas, al determinar el número mínimo de viriones necesarios para producir una enfermedad y en procedimientos virales de investigación.
Microscopía óptica
Si bien la microscopía óptica no es útil para la examinación directa de los virus (con excepción de los virus de la viruela), es útil para observar los efectos de la infección viral en la célula hospedera. El daño celular o la destrucción causada por el virus es conocida como efecto citopático (CPE por sus siglas en inglés). Los efectos citopáticos que pueden observarse incluyen:
  1. Células redondeadas y agregados en forma de racimo de uvas, como se observa con adenovirus;
  2. Células redondeadas, encogidas, lisadas, dejando gran cantidad de restos celulares, como se observa con los enterovirus;
  3. Células agrandadas y redondeadas en áreas focales, como con herpesvirus; y
  4. Fusión de células que se convierten en células multinucleadas (sinsicios) como en el caso de paramyxovirus.
Además es posible observar cuerpos de inclusión, característicos de algunos virus.
Efecto citopático del herpes virus “lento” equino.
Figura 2-2. Efecto citopático del herpes virus "lento" equino. Cortesía de A. Wayne Roberts. Para ver oprima la figura
Microscopía de fluorescencia
La microscopía de fluorescencia puede ser usada para visualizar células o tejidos infectados por virus, usando anticuerpos antígeno-específicos marcados con fluorocromos. El anticuerpo se une específicamente a los antígenos virales presentes dentro de las células o tejidos y los marca con la molécula fluorescente (generalmente fluoresceína). La marca fluorescente se observa posteriormente con un microscopio de luz ultravioleta que excita a la molécula del fluorocromo, lo que uno observa como una zona coloreada sobre un fondo relativamente oscuro. De manera alternativa, la visualización puede llevarse a cabo de forma indirecta usando anticuerpos sin marca (como los de sueros convalecientes) seguidos de la aplicación de anticuerpos marcados con fluoresceína que se unen al primer anticuerpo. Los ensayos basados en el uso de anticuerpos fluorescentes son usados comúnmente en el diagnóstico viral y la investigación.
Microscopía electrónica
La microscopía electrónica involucra la aceleración de electrones a un estado de alta energía y el enfoque magnético de los mismos hacia la muestra. Los electrones de alta energía tienen longitudes de onda muy cortas, proporcionando así una mejor resolución de estructuras muy pequeñas. La microscopía electrónica tiene suficiente poder de resolución para observar polímeros grandes como ADN y ARN, así como proteínas grandes.
Para facilitar la visualización, las muestras pueden ser cubiertas con metales pesados como osmio, antes de la examinación con el microscopio electrónico. Los electrones impactan el metal pesado y posteriormente son visualizados en una pantalla fluorescente. La microscopía electrónica proporciona imágenes tridimensionales de viriones y de su localización (nuclear o citoplasmática) dentro de la célula hospedera en un momento dado durante la infección. La observación de viriones en células vivas no es posible, debido a que las muestras tienen que ser tratadas con metales pesados.
Microscopía de fuerza atómica
La microscopía de fuerza atómica trabaja a través de la medición de una propiedad local (tal como altura, absorción óptica, magnetismo, etc.) de una sonda puesta muy cerca de la muestra. Esto hace posible tomar mediciones en un área muy pequeña de la muestra. Los electrones son capaces de "atravesar por túnel" entre los átomos, provocando una fuerza pequeña pero cuantificable. El resultado de estas mediciones es un mapa detallado del contorno o la superficie de la estructura.
La ventaja de la microscopía de fuerza atómica es que la preparación de la muestra es mínima y pueden usarse especímenes vivos. Este método ha sido útil para obtener imágenes detalladas de estructuras de cápsides y de interacciones virus-célula.
Microscopía inmunoelectrónica
Esta técnica permite la visualización de complejos antígeno / anticuerpo que son específicos para un virus en particular. En este método se obtienen cortes ultra finos (de la muestra) y se incuban con un anticuerpo específico para el virus. Después de un paso de lavado, el corte se incuba con Proteína A conjugada con partículas de oro (de un rango de 5 a 20 nm). Este conjugado se une a la porción Fc del anticuerpo y se detecta por microscopía electrónica.

Enumeración directa de virus

Estimar el número de virus tiene una cantidad importante de usos, incluyendo producción de vacunas e investigación. La microscopía electrónica se usa para cuantificar las partículas virales en una solución libre de células. Se examina un volumen conocido de la muestra y se cuenta el número de viriones. Este número se usa para calcular el número de virus. Una limitante es que las cápsides vacías, es decir, partículas no infectantes, también son contadas. En investigación, se compara el número de partículas infectantes y el número total, y se establece una relación de partículas totales / partículas infecciosas para un virus dado.

Enumeración indirecta de virus

Los métodos indirectos de cuantificación viral son aquellos que usan factores asociados con la infectividad (actividad biológica). Los tres métodos principales usados para determinar indirectamente concentraciones virales son: ensayos de hemoaglutinación, ensayos de formación de placas y el método de la dilución limitante.
Hemoaglutinación
Este ensayo se basa en la propiedad que tienen muchos virus envueltos para aglutinar glóbulos rojos (RBCs) o (GR).
El ensayo se lleva a cabo en una microplaca, añadiendo glóbulos rojos a diluciones de la muestra que contiene virus, y observando posteriormente la hemoaglutinación. Son necesarias muchas partículas virales para cubrir los glóbulos rojos y producir hemoaglutinación. Por ejemplo: se necesitan aproximadamente 104 viriones de influenza por unidad hemoaglutinante (1 unidad de HA). Una unidad de HA se define como la máxima dilución de la muestra viral que causa hemoaglutinación completa.
La hemoaglutinación es útil en la concentración y purificación de algunos virus, y como prueba presuntiva rápida para la presencia de este tipo de virus en fluidos de cultivos celulares infectados y de embriones de pollo. Es especialmente útil para probar actividad viral en cultivos celulares infectados con virus hemoaglutinantes que producen un efecto citopático (CPE) mínimo o no detectable. También pueden ser examinados directamente especímenes clínicos como heces, para buscar actividad hemoaglutinante de partículas virales (se discutirá posteriormente en el capítulo 7).
Otros ensayos del mismo tipo, en los que se prueba una actividad enzimática de un virus en particular (como aquellos que producen transcriptasa reversa), pueden ser llevados a cabo de manera similar.
Ensayo de formación de placas
Este ensayo involucra la inoculación de células hospederas susceptibles con un virus, y usar su actividad biológica para estimar el número de viriones presentes.
En este procedimiento se usan diluciones decimales seriadas del virus para inocular monocapas de células hospederas. Después de un periodo de incubación en el que se permite la adsorción del virus a la superficie de las células hospederas, la monocapa es cubierta por una capa de un gel compuesto por medio de cultivo para células hospederas y agarosa. La presencia del agar evita la diseminación a gran escala del virus en el cultivo celular, pero permite la diseminación localizada de célula a célula. Con los virus citopáticos la destrucción de las células lleva a la formación de zonas desocupadas llamadas placas, que pueden ser vistas entre las 24 y 72 horas de incubación. Un cálculo que involucra el número de placas observadas, el factor de dilución de la muestra y el volumen de muestra diluida utilizada, da como resultado las unidades formadoras de placa (PFU) por mililitro de muestra.
El método de dilución limitante
Este ensayo basado en titulación mide un efecto in vitro sobre las células, como el CPE, cuando éstas se expone a varias diluciones de la solución que contiene el virus. Si es posible, se usa una concentración conocida de un virus de referencia como control positivo. Dependiendo del virus, se hacen diluciones seriadas dobles o diluciones seriadas decimales del material viral y se ponen en contacto con las células. El título infectivo (el recíproco de la dilución más alta que provoca el 50% de CPE en el cultivo infectado) se expresa como TCID50/ml (dosis infectiva 50 cultivo celular). Este ensayo puede usarse con células en cultivo, embriones de pollo o incluso con animales de laboratorio.

Métodos misceláneos usados para caracterización

Hay algunos métodos en virología que son útiles en la identificación y clasificación de virus desconocidos. Algunas de esas técnicas serán mencionadas brevemente aquí, pero si se usan en el diagnóstico de laboratorio de un virus en particular, se explicarán con detalle posteriormente.
Sensibilidad a solventes lipídicos
La sensibilidad de los virus a solventes lipídicos como cloroformo y éter es útil en la taxonomía de ciertos virus. Cualquier virus que posea envoltura es susceptible a solventes lipídicos. Todos los virus envueltos de animales, excepto algunos virus de la viruela, son sensibles al éter.
Identificación del tipo de ácido nucleico
Esto se lleva a cabo examinando la síntesis de ácido nucleico en la célula, en presencia de inhibidores de la síntesis de ADN, como la 5-bromo-2-desoxiuridina (BRU). Si se inhibe la síntesis viral como consecuencia disminuirá la multiplicación viral. En el caso de que el crecimiento viral no sea inhibido se presume que al virus contiene ARN.
Análisis con enzimas de restricción
Las enzimas de restricción (RE) son endonucleasas que cortan el ADN de doble cadena en sitios de reconocimiento específicos que son secuencias palindrómicas que van desde cuatro hasta ocho pares de bases de longitud.
El análisis con enzimas de restricción es particularmente útil en la clasificación de "subserotipos" virales, en la diferenciación de virus vivos modificados vacunales de virus virulentos y en el rastreo epidemiológico de brotes de enfermedades. Metodológicamente esta técnica consiste en tratar el ADN viral con una o varias enzimas de restricción y luego separar los fragmentos resultantes por medio de electroforesis en geles de poliacrilamida.
Los virus de ARN pueden ser analizados de una manera similar haciendo primero el ADN complementario (ADNc) al ARN viral usando la enzima transcriptasa reversa, y luego amplificando este ADNc por el método de PCR descrito en el capítulo 7.
Hemoadsorción
Virus envueltos como los ortomixovirus y paramixovirus adquieren su envoltura externa por protrusión de yemas a través de la membrana celular. Antes de la protrusión, se incorporan a la membrana celular proteínas codificadas por el virus (hemoaglutininas). Esas células (aquellas a las se incorporaron hemoaglutininas a su membrana) adsorben eritrocitos a su superficie, lo que trae como consecuencia la formación de focos de hemoadsorción que pueden ser detectados microscópicamente.
Métodos inmunológicos
Los animales infectados con virus responden produciendo anticuerpos específicos. La detección y cuantificación de estos anticuerpos, que reflejan el estado de la enfermedad, son útiles en la planeación de programas de salud para el hato y estudios epidemiológicos de los brotes de enfermedades.
Si bien la detección de anticuerpos es útil en el diagnóstico de enfermedades también, con frecuencia es un proceso tardado que requiere la comparación de los niveles de anticuerpos en sueros de la fase aguda de la enfermedad y de la convalecencia, sueros que se colectan con 10 a 14 días de diferencia unos de otros. Una estrategia más rápida es usar anticuerpos específicos anti-virus para detectar antígenos virales directamente en especímenes clínicos. Estos anticuerpos generalmente se obtienen por hiperinmunización de conejos o cabras con un virus específico. De manera alternativa pueden usarse anticuerpos monoclonales, si hay disponibles.
Los anticuerpos monoclonales (mAbs) se preparan en ratones primero exponiendo al ratón al antígeno viral, que sensibiliza a las células B del bazo. Estas células se colectan y se fusionan químicamente con una línea celular de plasmocitoma de ratón que secreta IgG. Posteriormente estas células híbridas son clonadas y los hibridomas resultantes, que son derivados de una sola célula, se analizan para buscar secreción de la IgG antiviral específica. Las células del hibridoma seleccionado son inyectadas de regreso por vía intraperitoneal al ratón, donde las células se multiplican rápidamente y causan la acumulación de un fluido ascítico que contiene una alta concentración de anticuerpos monoclonales.
La figura 2.1 muestra los pasos involucrados en la preparación de los anticuerpos monoclonales.
Los anticuerpos monoclonales son especialmente útiles en la tipificación y subtipificación de virus. Cuando son acoplados a fluorocromos, los mAbs son muy usados para la detección de virus en tejidos. También son usados para la identificación de virus en muchos estuches diagnósticos comerciales de ELISAs.
Las pruebas más comúnmente usadas en virología clínica o diagnóstica serán discutidas en el capítulo 7.
Pasos asociados al desarrollo de anticuerpos monoclonales específicos.
Figure 2-3. Pasos asociados al desarrollo de anticuerpos monoclonales específicos. Para ver oprima la figura

Glosario

Virus citopáticos:
Son aquellos que alteran la apariencia microscópica de células en cultivo. Estos cambios pueden incluir redondeo de las células, fusión celular, desprendimiento celular, producción de cuerpos de inclusión, etc.
Gradientes de densidad:
Procedimiento para separar células o macromoléculas como proteínas y ácidos nucleicos, generalmente usando centrifugación a través de un gradiente de densidad. Este último consiste en una solución en la que hay un rango de densidades del soluto (generalmente sacarosa o cloruro de cesio), menos concentrado en la superficie y más concentrado en el fondo. Como resultado de la centrifugación las células o macromoléculas se desplazan a través del gradiente y forman una banda que se ubica donde su gravedad específica es igual a la densidad del medio.
Palíndromos:
Secuencias que se leen igual en ambas direcciones. La mayoría de los sitios de reconocimiento de las endonucleasas de restricción son palíndromos, por ejemplo la secuencia de reconocimiento de EcoR1 (E.coli) es:
5' GAATTC 3'
3' CTTAAG 5'

No hay comentarios:

Publicar un comentario en la entrada